亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel end-to-end method for cross-view pose estimation. Given a ground-level query image and an aerial image that covers the query's local neighborhood, the 3 Degrees-of-Freedom camera pose of the query is estimated by matching its image descriptor to descriptors of local regions within the aerial image. The orientation-aware descriptors are obtained by using a translationally equivariant convolutional ground image encoder and contrastive learning. The Localization Decoder produces a dense probability distribution in a coarse-to-fine manner with a novel Localization Matching Upsampling module. A smaller Orientation Decoder produces a vector field to condition the orientation estimate on the localization. Our method is validated on the VIGOR and KITTI datasets, where it surpasses the state-of-the-art baseline by 72% and 36% in median localization error for comparable orientation estimation accuracy. The predicted probability distribution can represent localization ambiguity, and enables rejecting possible erroneous predictions. Without re-training, the model can infer on ground images with different field of views and utilize orientation priors if available. On the Oxford RobotCar dataset, our method can reliably estimate the ego-vehicle's pose over time, achieving a median localization error under 1 meter and a median orientation error of around 1 degree at 14 FPS.

相關內容

In endoscopic imaging, the recorded images are prone to exposure abnormalities, so maintaining high-quality images is important to assist healthcare professionals in performing decision-making. To overcome this issue, We design a frequency-domain based network, called FD-Vision Mamba (FDVM-Net), which achieves high-quality image exposure correction by reconstructing the frequency domain of endoscopic images. Specifically, inspired by the State Space Sequence Models (SSMs), we develop a C-SSM block that integrates the local feature extraction ability of the convolutional layer with the ability of the SSM to capture long-range dependencies. A two-path network is built using C-SSM as the basic function cell, and these two paths deal with the phase and amplitude information of the image, respectively. Finally, a degraded endoscopic image is reconstructed by FDVM-Net to obtain a high-quality clear image. Extensive experimental results demonstrate that our method achieves state-of-the-art results in terms of speed and accuracy, and it is noteworthy that our method can enhance endoscopic images of arbitrary resolution. The URL of the code is \url{//github.com/zzr-idam/FDVM-Net}.

This paper introduces a novel physical-layer method labelled as Multi-Modal Concurrent Transmission (MMCT) for efficient transmission of multiple data streams with different reliability-latency performance requirements. The MMCT arranges data from multiple streams within a same physical-layer transport block wherein stream-specific modulation and coding scheme (MCS) selection is combined with joint mapping of modulated codewords to Multiple-Input Multiple-Output spatial layers and frequency resources. Mapping to spatial-frequency resources with higher Signal-to-Noise Ratios (SNRs) provides the required performance boost for the more demanding streams. In tactile internet applications, wherein haptic feedback/actuation and audio-video streams flow in parallel, the method provides significant SNR and spectral efficiency enhancements compared to conventional 3GPP New Radio (NR) transmission methods.

We present a novel approach to enhance the capabilities of VQ-VAE models through the integration of a Residual Encoder and a Residual Pixel Attention layer, named Attentive Residual Encoder (AREN). The objective of our research is to improve the performance of VQ-VAE while maintaining practical parameter levels. The AREN encoder is designed to operate effectively at multiple levels, accommodating diverse architectural complexities. The key innovation is the integration of an inter-pixel auto-attention mechanism into the AREN encoder. This approach allows us to efficiently capture and utilize contextual information across latent vectors. Additionally, our models uses additional encoding levels to further enhance the model's representational power. Our attention layer employs a minimal parameter approach, ensuring that latent vectors are modified only when pertinent information from other pixels is available. Experimental results demonstrate that our proposed modifications lead to significant improvements in data representation and generation, making VQ-VAEs even more suitable for a wide range of applications as the presented.

Most transformer-based video encoders are limited to short temporal contexts due to their quadratic complexity. While various attempts have been made to extend this context, this has often come at the cost of both conceptual and computational complexity. We propose to instead re-purpose existing pre-trained video transformers by simply fine-tuning them to attend to memories derived non-parametrically from past activations. By leveraging redundancy reduction, our memory-consolidated vision transformer (MC-ViT) effortlessly extends its context far into the past and exhibits excellent scaling behavior when learning from longer videos. In doing so, MC-ViT sets a new state-of-the-art in long-context video understanding on EgoSchema, Perception Test, and Diving48, outperforming methods that benefit from orders of magnitude more parameters.

We recently developed SLM, a joint speech and language model, which fuses a pretrained foundational speech model and a large language model (LLM), while preserving the in-context learning capability intrinsic to the pretrained LLM. In this paper, we apply SLM to speech dialog applications where the dialog states are inferred directly from the audio signal. Task-oriented dialogs often contain domain-specific entities, i.e., restaurants, hotels, train stations, and city names, which are difficult to recognize, however, critical for the downstream applications. Inspired by the RAG (retrieval-augmented generation) paradigm, we propose a retrieval augmented SLM (ReSLM) that overcomes this weakness. We first train a speech retriever to retrieve text entities mentioned in the audio. The retrieved entities are then added as text inputs to the underlying SLM to bias model predictions. We evaluated ReSLM on speech MultiWoz task (DSTC-11 challenge), and found that this retrieval augmentation boosts model performance, achieving joint goal accuracy (38.6% vs 32.7%), slot error rate (20.6% vs 24.8%) and ASR word error rate (5.5% vs 6.7%). While demonstrated on dialog state tracking, our approach is broadly applicable to other speech tasks requiring contextual information or domain-specific entities, such as contextual ASR with biasing capability.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司