亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.

相關內容

Optimal packing of objects in containers is a critical problem in various real-life and industrial applications. This paper investigates the two-dimensional packing of convex polygons without rotations, where only translations are allowed. We study different settings depending on the type of containers used, including minimizing the number of containers or the size of the container based on an objective function. Building on prior research in the field, we develop polynomial-time algorithms with improved approximation guarantees upon the best-known results by Alt, de Berg and Knauer, as well as Aamand, Abrahamsen, Beretta and Kleist, for problems such as Polygon Area Minimization, Polygon Perimeter Minimization, Polygon Strip Packing, and Polygon Bin Packing. Our approach utilizes a sequence of object transformations that allows sorting by height and orientation, thus enhancing the effectiveness of shelf packing algorithms for polygon packing problems. In addition, we present efficient approximation algorithms for special cases of the Polygon Bin Packing problem, progressing toward solving an open question concerning an O(1)-approximation algorithm for arbitrary polygons.

RF fingerprinting is emerging as a physical layer security scheme to identify illegitimate and/or unauthorized emitters sharing the RF spectrum. However, due to the lack of publicly accessible real-world datasets, most research focuses on generating synthetic waveforms with software-defined radios (SDRs) which are not suited for practical deployment settings. On other hand, the limited datasets that are available focus only on chipsets that generate only one kind of waveform. Commercial off-the-shelf (COTS) combo chipsets that support two wireless standards (for example WiFi and Bluetooth) over a shared dual-band antenna such as those found in laptops, adapters, wireless chargers, Raspberry Pis, among others are becoming ubiquitous in the IoT realm. Hence, to keep up with the modern IoT environment, there is a pressing need for real-world open datasets capturing emissions from these combo chipsets transmitting heterogeneous communication protocols. To this end, we capture the first known emissions from the COTS IoT chipsets transmitting WiFi and Bluetooth under two different time frames. The different time frames are essential to rigorously evaluate the generalization capability of the models. To ensure widespread use, each capture within the comprehensive 72 GB dataset is long enough (40 MSamples) to support diverse input tensor lengths and formats. Finally, the dataset also comprises emissions at varying signal powers to account for the feeble to high signal strength emissions as encountered in a real-world setting.

We study worst-case VCG redistribution mechanism design for the public project problem. We use a multilayer perceptron (MLP) with ReLU activation to model the payment function and use mixed integer programming (MIP) to solve for the worst-case type profiles that maximally violate the mechanism design constraints. We collect these worst-case type profiles and use them as training samples to train toward better worst-case mechanisms. In practice, we require a tiny network structure for the above approach to scale. The Lottery Ticket Hypothesis states that a large network is likely to contain a "winning ticket" -- a much smaller subnetwork that "won the initialization lottery", which makes its training particularly effective. Motivated by this hypothesis, we train a large network and prune it into a tiny subnetwork. We run MIP-based worst-case training on the drawn subnetwork and evaluate the resulting mechanism's worst-case performance. If the subnetwork does not achieve good worst-case performance, then we record the type profiles that cause the current draw to be bad. To draw again, we restore the large network to its initial weights and prune using recorded type profiles from earlier draws, therefore avoiding drawing the same ticket twice. We expect to eventually encounter a tiny subnetwork that leads to effective training for our worst-case mechanism design task. Lastly, a by-product of multiple ticket draws is an ensemble of mechanisms with different worst cases, which improves the worst-case performance further. Using our approach, we find previously unknown optimal mechanisms for up to 5 agents. Our results confirm the tightness of existing theoretical upper bounds. For up to 20 agents, we derive significantly improved worst-case mechanisms, surpassing a long list of existing manual results.

Several recent studies advocate the use of spectral discriminators, which evaluate the Fourier spectra of images for generative modeling. However, the effectiveness of the spectral discriminators is not well interpreted yet. We tackle this issue by examining the spectral discriminators in the context of perceptual image super-resolution (i.e., GAN-based SR), as SR image quality is susceptible to spectral changes. Our analyses reveal that the spectral discriminator indeed performs better than the ordinary (a.k.a. spatial) discriminator in identifying the differences in the high-frequency range; however, the spatial discriminator holds an advantage in the low-frequency range. Thus, we suggest that the spectral and spatial discriminators shall be used simultaneously. Moreover, we improve the spectral discriminators by first calculating the patch-wise Fourier spectrum and then aggregating the spectra by Transformer. We verify the effectiveness of the proposed method twofold. On the one hand, thanks to the additional spectral discriminator, our obtained SR images have their spectra better aligned to those of the real images, which leads to a better PD tradeoff. On the other hand, our ensembled discriminator predicts the perceptual quality more accurately, as evidenced in the no-reference image quality assessment task.

Video anomaly detection (VAD) is an important but challenging task in computer vision. The main challenge rises due to the rarity of training samples to model all anomaly cases. Hence, semi-supervised anomaly detection methods have gotten more attention, since they focus on modeling normals and they detect anomalies by measuring the deviations from normal patterns. Despite impressive advances of these methods in modeling normal motion and appearance, long-term motion modeling has not been effectively explored so far. Inspired by the abilities of the future frame prediction proxy-task, we introduce the task of future video prediction from a single frame, as a novel proxy-task for video anomaly detection. This proxy-task alleviates the challenges of previous methods in learning longer motion patterns. Moreover, we replace the initial and future raw frames with their corresponding semantic segmentation map, which not only makes the method aware of object class but also makes the prediction task less complex for the model. Extensive experiments on the benchmark datasets (ShanghaiTech, UCSD-Ped1, and UCSD-Ped2) show the effectiveness of the method and the superiority of its performance compared to SOTA prediction-based VAD methods.

We introduce a new, open-source computational general relativity framework for the Wolfram Language called Gravitas, which boasts a number of novel and distinctive features as compared to the many pre-existing computational and numerical relativity frameworks currently available within the open-source community. These include, but are not limited to: seamless integration of its powerful symbolic and numerical subsystems, and, by extension, seamless transition between analytic/continuous representations and numerical/discrete representations of arbitrary spacetime geometries; highly modular, general and extensible representations of spacetime geometries, spacetime topologies, gauge conditions, coordinate systems, matter fields, evolution equations and initial data; ability to set up and run complex numerical relativity simulations, and to perform 2D and 3D visualizations, symbolic computations and numerical analysis (including the extraction of gravitational wave signals) on the resulting data, all from within a single notebook environment; and a totally-unstructured adaptive refinement scheme based on hypergraph rewriting, allowing for exceedingly efficient discretization and numerical evolution of Cauchy initial data for a wide range of challenging computational problems involving strong relativistic field dynamics. In this first in a series of two articles covering the framework, we focus on the design and capabilities of Gravitas's symbolic subsystem, including its general and flexible handling of arbitrary geometries parametrized by arbitrary curvilinear coordinate systems (along with an in-built library of standard metrics and coordinate conditions), as well as its various high-level tensor calculus and differential geometry features. We proceed to show how this subsystem can be used to solve the Einstein field equations both analytically and numerically.

Packet scheduling is a fundamental networking task that recently received renewed attention in the context of programmable data planes. Programmable packet scheduling systems such as those based on Push-In First-Out (PIFO) abstraction enabled flexible scheduling policies, but are too resource-expensive for large-scale line rate operation. This prompted research into practical programmable schedulers (e.g., SP-PIFO, AIFO) approximating PIFO behavior on regular hardware. Yet, their scalability remains limited due to extensive number of memory operations. To address this, we design an effective yet resource-efficient packet scheduler, Range-In First-Out (RIFO), which uses only three mutable memory cells and one FIFO queue per PIFO queue. RIFO is based on multi-criteria decision-making principles and uses small guaranteed admission buffers. Our large-scale simulations in Netbench demonstrate that despite using fewer resources, RIFO generally achieves competitive flow completion times across all studied workloads, and is especially effective in workloads with a significant share of large flows, reducing flow completion time up to 2.9x in Datamining workloads compared to state-of-the-art solutions. Our prototype implementation using P4 on Tofino switches requires only 650 lines of code, is scalable, and runs at line rate.

Randomized Controlled Trials (RCTs) often adjust for baseline covariates in order to increase power. This technical note provides a short derivation of a simple rule of thumb for approximating the ratio of the power of an adjusted analysis to that of an unadjusted analysis. Specifically, if the unadjusted analysis is powered to approximately 80\%, then the ratio of the power of the adjusted analysis to the power of the unadjusted analysis is approximately $1 + \frac{1}{2} R^2$, where $R$ is the correlation between the baseline covariate and the outcome.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司