亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized Controlled Trials (RCTs) often adjust for baseline covariates in order to increase power. This technical note provides a short derivation of a simple rule of thumb for approximating the ratio of the power of an adjusted analysis to that of an unadjusted analysis. Specifically, if the unadjusted analysis is powered to approximately 80\%, then the ratio of the power of the adjusted analysis to the power of the unadjusted analysis is approximately $1 + \frac{1}{2} R^2$, where $R$ is the correlation between the baseline covariate and the outcome.

相關內容

Model Predictive Control lacks the ability to escape local minima in nonconvex problems. Furthermore, in fast-changing, uncertain environments, the conventional warmstart, using the optimal trajectory from the last timestep, often falls short of providing an adequately close initial guess for the current optimal trajectory. This can potentially result in convergence failures and safety issues. Therefore, this paper proposes a framework for learning-aided warmstarts of Model Predictive Control algorithms. Our method leverages a neural network based multimodal predictor to generate multiple trajectory proposals for the autonomous vehicle, which are further refined by a sampling-based technique. This combined approach enables us to identify multiple distinct local minima and provide an improved initial guess. We validate our approach with Monte Carlo simulations of traffic scenarios.

Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.

Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.

Our work addresses the critical issue of distinguishing text generated by Large Language Models (LLMs) from human-produced text, a task essential for numerous applications. Despite ongoing debate about the feasibility of such differentiation, we present evidence supporting its consistent achievability, except when human and machine text distributions are indistinguishable across their entire support. Drawing from information theory, we argue that as machine-generated text approximates human-like quality, the sample size needed for detection increases. We establish precise sample complexity bounds for detecting AI-generated text, laying groundwork for future research aimed at developing advanced, multi-sample detectors. Our empirical evaluations across multiple datasets (Xsum, Squad, IMDb, and Kaggle FakeNews) confirm the viability of enhanced detection methods. We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero. Our findings align with OpenAI's empirical data related to sequence length, marking the first theoretical substantiation for these observations.

Electronic Governance (eGov) and Robotic Process Automation (RPA) are two technological advancements that have the potential to revolutionize the way organizations manage their operations. When applied to Distributed Management (DM), these technologies can further enhance organizational efficiency and effectiveness. In this brief article, we present a mathematical model for calculating the cost of accomplishing a task by applying eGov and RPA in a DM system. This model is one of the first of its kind, and is expected to spark further research on cost analysis for organizational efficiency given the unprecedented advancements in electronic and automation technologies.

To maintain a reliable grid we need fast decision-making algorithms for complex problems like Dynamic Reconfiguration (DyR). DyR optimizes distribution grid switch settings in real-time to minimize grid losses and dispatches resources to supply loads with available generation. DyR is a mixed-integer problem and can be computationally intractable to solve for large grids and at fast timescales. We propose GraPhyR, a Physics-Informed Graph Neural Network (GNNs) framework tailored for DyR. We incorporate essential operational and connectivity constraints directly within the GNN framework and train it end-to-end. Our results show that GraPhyR is able to learn to optimize the DyR task.

While VideoQA Transformer models demonstrate competitive performance on standard benchmarks, the reasons behind their success are not fully understood. Do these models jointly capture and leverage the rich multimodal structures and dynamics from video and text? Or are they merely exploiting shortcuts to achieve high scores? Hence, we design $\textit{QUAG}$ (QUadrant AveraGe), a lightweight and non-parametric probe, to critically analyze multimodal representations. QUAG facilitates combined dataset-model study by systematic ablation of model's coupled multimodal understanding during inference. Surprisingly, it demonstrates that the models manage to maintain high performance even under multimodal impairment. We extend QUAG to design "QUAG-attention", a simplistic and less-expressive replacement of self-attention. We find that the models with QUAG-attention achieve similar performance with significantly less mulops without any finetuning. These findings indicate that the current VideoQA benchmarks and metrics do not penalize models that find shortcuts and discount joint multimodal understanding. Motivated by this, we propose the $\textit{CLAVI}$ (Counterfactual in LAnguage and VIdeo), a diagnostic dataset for coupled multimodal understanding in VideoQA. CLAVI consists of temporal questions and videos that are augmented to curate balanced counterfactuals in language and video domains. We evaluate models on CLAVI and find that all models achieve high performance on multimodal shortcut instances, but most of them have poor performance on the counterfactual instances that necessitate joint multimodal understanding. Overall, with the multimodal representation analysis using QUAG and diagnostic analysis using CLAVI, we show that many VideoQA models are incapable of learning multimodal representations and that their success on standard datasets is an illusion of joint multimodal understanding.

This paper performs the first study to understand the prevalence, challenges, and effectiveness of using Static Application Security Testing (SAST) tools on Open-Source Embedded Software (EMBOSS) repositories. We collect a corpus of 258 of the most popular EMBOSS projects, representing 13 distinct categories such as real-time operating systems, network stacks, and applications. To understand the current use of SAST tools on EMBOSS, we measured this corpus and surveyed developers. To understand the challenges and effectiveness of using SAST tools on EMBOSS projects, we applied these tools to the projects in our corpus. We report that almost none of these projects (just 3%) use SAST tools beyond those baked into the compiler, and developers give rationales such as ineffectiveness and false positives. In applying SAST tools ourselves, we show that minimal engineering effort and project expertise are needed to apply many tools to a given EMBOSS project. GitHub's CodeQL was the most effective SAST tool -- using its built-in security checks we found a total of 540 defects (with a false positive rate of 23%) across the 258 projects, with 399 (74%) likely security vulnerabilities, including in projects maintained by Microsoft, Amazon, and the Apache Foundation. EMBOSS engineers have confirmed 273 (51%) of these defects, mainly by accepting our pull requests. Two CVEs were issued. In summary, we urge EMBOSS engineers to adopt the current generation of SAST tools, which offer low false positive rates and are effective at finding security-relevant defects.

Requirements engineering (RE) literature acknowledges the importance of early stakeholder identification. The sources of requirements are many and also constantly changing as the market and business constantly change. Identifying and consulting all stakeholders on the market is impractical; thus many companies utilize indirect data sources, e.g. documents and representatives of larger groups of stakeholders. However, companies often collect irrelevant data or develop their products based on the sub-optimal information sources that may lead to missing market opportunities. We propose a collaborative method for identification and selection of data sources. The method consists of four steps and aims to build consensus between different perspectives in an organization. We demonstrate the use of the method with three industrial case studies. We have presented and statically validated the method to support prioritization of stakeholders for MDRE. Our results show that the method can support the identification and selection of data sources in three ways: (1) by providing systematic steps to identify and prioritize data sources for RE, (2) by highlighting and resolving discrepancies between different perspectives in an organization, and (3) by analyzing the underlying rationale for using certain data sources.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司