Cloud services are omnipresent and critical cloud service failure is a fact of life. In order to retain customers and prevent revenue loss, it is important to provide high reliability guarantees for these services. One way to do this is by predicting outages in advance, which can help in reducing the severity as well as time to recovery. It is difficult to forecast critical failures due to the rarity of these events. Moreover, critical failures are ill-defined in terms of observable data. Our proposed method, Outage-Watch, defines critical service outages as deteriorations in the Quality of Service (QoS) captured by a set of metrics. Outage-Watch detects such outages in advance by using current system state to predict whether the QoS metrics will cross a threshold and initiate an extreme event. A mixture of Gaussian is used to model the distribution of the QoS metrics for flexibility and an extreme event regularizer helps in improving learning in tail of the distribution. An outage is predicted if the probability of any one of the QoS metrics crossing threshold changes significantly. Our evaluation on a real-world SaaS company dataset shows that Outage-Watch significantly outperforms traditional methods with an average AUC of 0.98. Additionally, Outage-Watch detects all the outages exhibiting a change in service metrics and reduces the Mean Time To Detection (MTTD) of outages by up to 88% when deployed in an enterprise cloud-service system, demonstrating efficacy of our proposed method.
Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, which we term causal message-passing, is grounded in a high-dimensional approximate message passing methodology and is specifically tailored to experimental design settings with prevalent network interference. Utilizing causal message-passing, we present a practical algorithm for estimating the total treatment effect and demonstrate its efficacy in four numerical scenarios, each with its unique interference structure.
Traditional recommender systems have predominantly relied on identity representations (IDs) to characterize users and items. In contrast, the emergence of pre-trained language model (PLM) en-coders has significantly enriched the modeling of contextual item descriptions. While PLMs excel in addressing few-shot, zero-shot, and unified modeling scenarios, they often overlook the critical collaborative filtering signal. This omission gives rise to two pivotal challenges: (1) Collaborative Contextualization, aiming for the seamless integration of collaborative signals with contextual representations. (2) The necessity to bridge the representation gap between ID-based and contextual representations while preserving their contextual semantics. In this paper, we introduce CollabContext, a novel model that skillfully merges collaborative filtering signals with contextual representations, aligning these representations within the contextual space while retaining essential contextual semantics. Experimental results across three real-world datasets showcase substantial improvements. Through its capability in collaborative contextualization, CollabContext demonstrates remarkable enhancements in recommendation performance, particularly in cold-start scenarios. The code is available after the conference accepts the paper.
Hybrid cloud provides an attractive solution to microservices for better resource elasticity. A subset of application components can be offloaded from the on-premises cluster to the cloud, where they can readily access additional resources. However, the selection of this subset is challenging because of the large number of possible combinations. A poor choice degrades the application performance, disrupts the critical services, and increases the cost to the extent of making the use of hybrid cloud unviable. This paper presents Atlas, a hybrid cloud migration advisor. Atlas uses a data-driven approach to learn how each user-facing API utilizes different components and their network footprints to drive the migration decision. It learns to accelerate the discovery of high-quality migration plans from millions and offers recommendations with customizable trade-offs among three quality indicators: end-to-end latency of user-facing APIs representing application performance, service availability, and cloud hosting costs. Atlas continuously monitors the application even after the migration for proactive recommendations. Our evaluation shows that Atlas can achieve 21% better API performance (latency) and 11% cheaper cost with less service disruption than widely used solutions.
For video or web services, it is crucial to measure user-perceived quality of experience (QoE) at scale under various video quality or page loading delays. However, fast QoE measurements remain challenging as they must elicit subjective assessment from human users. Previous work either (1) automates QoE measurements by letting crowdsourcing raters watch and rate QoE test videos or (2) dynamically prunes redundant QoE tests based on previously collected QoE measurements. Unfortunately, it is hard to combine both ideas because traditional crowdsourcing requires QoE test videos to be pre-determined before a crowdsourcing campaign begins. Thus, if researchers want to dynamically prune redundant test videos based on other test videos' QoE, they are forced to launch multiple crowdsourcing campaigns, causing extra overheads to re-calibrate or train raters every time. This paper presents VidPlat, the first open-source tool for fast and automated QoE measurements, by allowing dynamic pruning of QoE test videos within a single crowdsourcing task. VidPlat creates an indirect shim layer between researchers and the crowdsourcing platforms. It allows researchers to define a logic that dynamically determines which new test videos need more QoE ratings based on the latest QoE measurements, and it then redirects crowdsourcing raters to watch QoE test videos dynamically selected by this logic. Other than having fewer crowdsourcing campaigns, VidPlat also reduces the total number of QoE ratings by dynamically deciding when enough ratings are gathered for each test video. It is an open-source platform that future researchers can reuse and customize. We have used VidPlat in three projects (web loading, on-demand video, and online gaming). We show that VidPlat can reduce crowdsourcing cost by 31.8% - 46.0% and latency by 50.9% - 68.8%.
Decentralized cryptocurrency networks, notably those with high energy demand, have faced significant criticism and subsequent regulatory scrutiny. Despite these concerns, policy interventions targeting cryptocurrency operations in the pursuit of sustainability have largely been ineffective. Some were abandoned for fear of jeopardizing innovation, whereas others failed due to the highly globalized nature of blockchain systems. In search of a more effective angle for energy policy measures, this study adopts a consumer-centric perspective, examining the sentiments of Nigerian cryptocurrency users (${n=158}$) toward Bitcoin's sustainability, a representative cryptocurrency known for its high electricity demand. Three main findings emerged: 1) Even among those self-identifying as highly knowledgeable, most considerably underestimated Bitcoin's electricity consumption. 2) Participants with a more accurate understanding of Bitcoin's energy demand were more inclined to support sustainability measures. 3) Most of this supportive cohort viewed private entities as the primary stakeholders for implementing such measures. Given these findings, we suggest that consumer education should be at the forefront of policy initiatives aimed at cryptocurrency sustainability.
Recommender systems are important and powerful tools for various personalized services. Traditionally, these systems use data mining and machine learning techniques to make recommendations based on correlations found in the data. However, relying solely on correlation without considering the underlying causal mechanism may lead to various practical issues such as fairness, explainability, robustness, bias, echo chamber and controllability problems. Therefore, researchers in related area have begun incorporating causality into recommendation systems to address these issues. In this survey, we review the existing literature on causal inference in recommender systems. We discuss the fundamental concepts of both recommender systems and causal inference as well as their relationship, and review the existing work on causal methods for different problems in recommender systems. Finally, we discuss open problems and future directions in the field of causal inference for recommendations.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.
Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .