亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional recommender systems have predominantly relied on identity representations (IDs) to characterize users and items. In contrast, the emergence of pre-trained language model (PLM) en-coders has significantly enriched the modeling of contextual item descriptions. While PLMs excel in addressing few-shot, zero-shot, and unified modeling scenarios, they often overlook the critical collaborative filtering signal. This omission gives rise to two pivotal challenges: (1) Collaborative Contextualization, aiming for the seamless integration of collaborative signals with contextual representations. (2) The necessity to bridge the representation gap between ID-based and contextual representations while preserving their contextual semantics. In this paper, we introduce CollabContext, a novel model that skillfully merges collaborative filtering signals with contextual representations, aligning these representations within the contextual space while retaining essential contextual semantics. Experimental results across three real-world datasets showcase substantial improvements. Through its capability in collaborative contextualization, CollabContext demonstrates remarkable enhancements in recommendation performance, particularly in cold-start scenarios. The code is available after the conference accepts the paper.

相關內容

協同過濾(英語:Collaborative Filtering),簡單來說是利用某興趣相投、擁有共同經驗之群體的喜好來推薦用戶感興趣的信息,個人透過合作的機制給予信息相當程度的回應(如評分)并記錄下來以達到過濾的目的進而幫助別人篩選信息,回應不一定局限于特別感興趣的,特別不感興趣信息的紀錄也相當重要。協同過濾又可分為評比(rating)或者群體過濾(social filtering)。其后成為電子商務當中很重要的一環,即根據某顧客以往的購買行為以及從具有相似購買行為的顧客群的購買行為去推薦這個顧客其“可能喜歡的品項”,也就是借由社群的喜好提供個人化的信息、商品等的推薦服務。除了推薦之外,近年來也發展出數學運算讓系統自動計算喜好的強弱進而去蕪存菁使得過濾的內容更有依據,也許不是百分之百完全準確,但由于加入了強弱的評比讓這個概念的應用更為廣泛,除了電子商務之外尚有信息檢索領域、網絡個人影音柜、個人書架等的應用等。

Large language models (LLMs) have demonstrated a powerful ability to answer various queries as a general-purpose assistant. The continuous multi-modal large language models (MLLM) empower LLMs with the ability to perceive visual signals. The launch of GPT-4 (Generative Pre-trained Transformers) has generated significant interest in the research communities. GPT-4V(ison) has demonstrated significant power in both academia and industry fields, as a focal point in a new artificial intelligence generation. Though significant success was achieved by GPT-4V, exploring MLLMs in domain-specific analysis (e.g., marine analysis) that required domain-specific knowledge and expertise has gained less attention. In this study, we carry out the preliminary and comprehensive case study of utilizing GPT-4V for marine analysis. This report conducts a systematic evaluation of existing GPT-4V, assessing the performance of GPT-4V on marine research and also setting a new standard for future developments in MLLMs. The experimental results of GPT-4V show that the responses generated by GPT-4V are still far away from satisfying the domain-specific requirements of the marine professions. All images and prompts used in this study will be available at //github.com/hkust-vgd/Marine_GPT-4V_Eval

Recently, text-guided scalable vector graphics (SVGs) synthesis has shown promise in domains such as iconography and sketch. However, existing text-to-SVG generation methods lack editability and struggle with visual quality and result diversity. To address these limitations, we propose a novel text-guided vector graphics synthesis method called SVGDreamer. SVGDreamer incorporates a semantic-driven image vectorization (SIVE) process that enables the decomposition of synthesis into foreground objects and background, thereby enhancing editability. Specifically, the SIVE process introduce attention-based primitive control and an attention-mask loss function for effective control and manipulation of individual elements. Additionally, we propose a Vectorized Particle-based Score Distillation (VPSD) approach to tackle the challenges of color over-saturation, vector primitives over-smoothing, and limited result diversity in existing text-to-SVG generation methods. Furthermore, on the basis of VPSD, we introduce Reward Feedback Learning (ReFL) to accelerate VPSD convergence and improve aesthetic appeal. Extensive experiments have been conducted to validate the effectiveness of SVGDreamer, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. The code and demo of SVGDreamer can be found at \href{//ximinng.github.io/SVGDreamer-project/}{//ximinng.github.io/SVGDreamer-project/}.

Existing contrastive language-image pre-training aims to learn a joint representation by matching abundant image-text pairs. However, the number of image-text pairs in medical datasets is usually orders of magnitude smaller than that in natural datasets. Besides, medical image-text pairs often involve numerous complex fine-grained correspondences. This paper aims to enhance the data efficiency by introducing multiple-to-multiple local relationship modeling to capture denser supervisions. More specifically, we propose a Medical Language-Image Pre-training (MLIP) framework, which exploits the limited image-text medical data more efficiently through patch-sentence matching. Furthermore, we introduce a masked contrastive learning strategy with semantic integrity estimation to reduce redundancy in images while preserving the underlying semantics. Our evaluation results show that MLIP outperforms previous work in zero/few-shot classification and few-shot segmentation tasks by a large margin.

Sequential recommenders are crucial to the success of online applications, \eg e-commerce, video streaming, and social media. While model architectures continue to improve, for every new application domain, we still have to train a new model from scratch for high quality recommendations. On the other hand, pre-trained language and vision models have shown great success in zero-shot or few-shot adaptation to new application domains. Inspired by the success of pre-trained models in peer AI fields, we propose a novel pre-trained sequential recommendation framework: PrepRec. We learn universal item representations by modeling item popularity dynamics. Through extensive experiments on five real-world datasets, we show that PrepRec, without any auxiliary information, can not only zero-shot transfer to a new domain, but achieve competitive performance compared to state-of-the-art sequential recommender models with only a fraction of the model size. In addition, with a simple post-hoc interpolation, PrepRec can improve the performance of existing sequential recommenders on average by 13.8\% in Recall@10 and 29.5% in NDCG@10. We provide an anonymized implementation of PrepRec at //anonymous.4open.science/r/PrepRec--2F60/

Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 23,020 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation. Source code, data source and reward model will be publicly accessible at //github.com/morecry/CharacterEval.

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

北京阿比特科技有限公司