亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we mainly propose efficient and reliable numerical algorithms for solving stochastic continuous-time algebraic Riccati equations (SCARE) typically arising from the differential statedependent Riccati equation technique from the 3D missile/target engagement, the F16 aircraft flight control and the quadrotor optimal control etc. To this end, we develop a fixed point (FP)-type iteration with solving a CARE by the structure-preserving doubling algorithm (SDA) at each iterative step, called FP-CARE SDA. We prove that either the FP-CARE SDA is monotonically nondecreasing or nonincreasing, and is R-linearly convergent, with the zero initial matrix or a special initial matrix satisfying some assumptions. The FP-CARE SDA (FPC) algorithm can be regarded as a robust initial step to produce a good initial matrix, and then the modified Newton (mNT) method can be used by solving the corresponding Lyapunov equation with SDA (FPC-mNT-Lyap SDA). Numerical experiments show that the FPC-mNT-Lyap SDA algorithm outperforms the other existing algorithms.

相關內容

In this paper, a robust weighted score for unbalanced data (ROWSU) is proposed for selecting the most discriminative feature for high dimensional gene expression binary classification with class-imbalance problem. The method addresses one of the most challenging problems of highly skewed class distributions in gene expression datasets that adversely affect the performance of classification algorithms. First, the training dataset is balanced by synthetically generating data points from minority class observations. Second, a minimum subset of genes is selected using a greedy search approach. Third, a novel weighted robust score, where the weights are computed by support vectors, is introduced to obtain a refined set of genes. The highest-scoring genes based on this approach are combined with the minimum subset of genes selected by the greedy search approach to form the final set of genes. The novel method ensures the selection of the most discriminative genes, even in the presence of skewed class distribution, thus improving the performance of the classifiers. The performance of the proposed ROWSU method is evaluated on $6$ gene expression datasets. Classification accuracy and sensitivity are used as performance metrics to compare the proposed ROWSU algorithm with several other state-of-the-art methods. Boxplots and stability plots are also constructed for a better understanding of the results. The results show that the proposed method outperforms the existing feature selection procedures based on classification performance from k nearest neighbours (kNN) and random forest (RF) classifiers.

In this paper, we present ECL, a novel multi-modal dataset containing the textual and numerical data from corporate 10K filings and associated binary bankruptcy labels. Furthermore, we develop and critically evaluate several classical and neural bankruptcy prediction models using this dataset. Our findings suggest that the information contained in each data modality is complementary for bankruptcy prediction. We also see that the binary bankruptcy prediction target does not enable our models to distinguish next year bankruptcy from an unhealthy financial situation resulting in bankruptcy in later years. Finally, we explore the use of LLMs in the context of our task. We show how GPT-based models can be used to extract meaningful summaries from the textual data but zero-shot bankruptcy prediction results are poor. All resources required to access and update the dataset or replicate our experiments are available on github.com/henriarnoUG/ECL.

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

In this paper, we present conditions for identifying the generator of a linear stochastic differential equation (SDE) from the distribution of its solution process with a given fixed initial state. These identifiability conditions are crucial in causal inference using linear SDEs as they enable the identification of the post-intervention distributions from its observational distribution. Specifically, we derive a sufficient and necessary condition for identifying the generator of linear SDEs with additive noise, as well as a sufficient condition for identifying the generator of linear SDEs with multiplicative noise. We show that the conditions derived for both types of SDEs are generic. Moreover, we offer geometric interpretations of the derived identifiability conditions to enhance their understanding. To validate our theoretical results, we perform a series of simulations, which support and substantiate the established findings.

There has been considerable recent interest in estimating heterogeneous causal effects. In this paper, we introduce conditional average partial causal effects (CAPCE) to reveal the heterogeneity of causal effects with continuous treatment. We provide conditions for identifying CAPCE in an instrumental variable setting. We develop three families of CAPCE estimators: sieve, parametric, and reproducing kernel Hilbert space (RKHS)-based, and analyze their statistical properties. We illustrate the proposed CAPCE estimators on synthetic and real-world data.

This study presents a novel approach that synergizes community detection algorithms with various Graph Neural Network (GNN) models to bolster link prediction in scientific literature networks. By integrating the Louvain community detection algorithm into our GNN frameworks, we consistently enhance performance across all models tested. For example, integrating Louvain with the GAT model resulted in an AUC score increase from 0.777 to 0.823, exemplifying the typical improvements observed. Similar gains are noted when Louvain is paired with other GNN architectures, confirming the robustness and effectiveness of incorporating community-level insights. This consistent uplift in performance reflected in our extensive experimentation on bipartite graphs of scientific collaborations and citations highlights the synergistic potential of combining community detection with GNNs to overcome common link prediction challenges such as scalability and resolution limits. Our findings advocate for the integration of community structures as a significant step forward in the predictive accuracy of network science models, offering a comprehensive understanding of scientific collaboration patterns through the lens of advanced machine learning techniques.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司