亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Miniature robots provide unprecedented access to confined environments and show promising potential for novel applications such as search-and-rescue and high-value asset inspection. The capability of body deformation further enhances the reachability of these small robots in complex cluttered terrains similar to those of insects and soft arthropods. Motivated by this concept, we present CLARI, an insect-scale 2.59g quadrupedal robot capable of body deformation with tethered electrical connections for power and control and manufactured using laminate fabrication and assembled using origami pop-up techniques. In order to enable locomotion in multiple shape configurations, we designed a novel body architecture comprising of modular, actuated leg mechanisms. Overall, CLARI has eight independently actuated degrees of freedom (two per modular leg unit) driven by custom piezoelectric actuators, making it mechanically dextrous. We characterize open-loop robot locomotion at multiple stride frequencies (1-10Hz) using multiple gaits (trot, walk, etc.) in three different fixed body shapes (long, symmetric, wide) and illustrate the robot's capabilities. Finally, we demonstrate preliminary results of CLARI locomoting with a compliant body in open terrain and through a laterally constrained gap, a novel capability for legged robots. Our results represent the first step towards achieving effective cluttered terrain navigation with adaptable compliant robots in real-world environments.

相關內容

Origami 是一個來(lai)自(zi) Facebook 設計(ji)團隊的作品,是 Quartz Composer 的免(mian)費工具包,可(ke)在無(wu)需編程的情況下輕松實現(xian)與設計(ji)原型進(jin)行交互。

We introduce a novel approach called the Bayesian Jackknife empirical likelihood method for analyzing survey data obtained from various unequal probability sampling designs. This method is particularly applicable to parameters described by U-statistics. Theoretical proofs establish that under a non-informative prior, the Bayesian Jackknife pseudo-empirical likelihood ratio statistic converges asymptotically to a normal distribution. This statistic can be effectively employed to construct confidence intervals for complex survey samples. In this paper, we investigate various scenarios, including the presence or absence of auxiliary information and the use of design weights or calibration weights. We conduct numerical studies to assess the performance of the Bayesian Jackknife pseudo-empirical likelihood ratio confidence intervals, focusing on coverage probability and tail error rates. Our findings demonstrate that the proposed methods outperform those based solely on the jackknife pseudo-empirical likelihood, addressing its limitations.

This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at //github.com/valterlej/zsarcap.

The deployment of machine learning solutions in real-world scenarios often involves addressing the challenge of out-of-distribution (OOD) detection. While significant efforts have been devoted to OOD detection in classical supervised settings, the context of weakly supervised learning, particularly the Multiple Instance Learning (MIL) framework, remains under-explored. In this study, we tackle this challenge by adapting post-hoc OOD detection methods to the MIL setting while introducing a novel benchmark specifically designed to assess OOD detection performance in weakly supervised scenarios. Extensive experiments based on diverse public datasets do not reveal a single method with a clear advantage over the others. Although DICE emerges as the best-performing method overall, it exhibits significant shortcomings on some datasets, emphasizing the complexity of this under-explored and challenging topic. Our findings shed light on the complex nature of OOD detection under the MIL framework, emphasizing the importance of developing novel, robust, and reliable methods that can generalize effectively in a weakly supervised context. The code for the paper is available here: //github.com/loic-lb/OOD_MIL.

The paper presents the main characteristics and a preliminary implementation of a novel computational framework named CompLog. Inspired by probabilistic programming systems like ProbLog, CompLog builds upon the inferential mechanisms proposed by Simplicity Theory, relying on the computation of two Kolmogorov complexities (here implemented as min-path searches via ASP programs) rather than probabilistic inference. The proposed system enables users to compute ex-post and ex-ante measures of unexpectedness of a certain situation, mapping respectively to posterior and prior subjective probabilities. The computation is based on the specification of world and mental models by means of causal and descriptive relations between predicates weighted by complexity. The paper illustrates a few examples of application: generating relevant descriptions, and providing alternative approaches to disjunction and to negation.

This paper introduces a novel approach for human-to-robot motion retargeting, enabling robots to mimic human motion with precision while preserving the semantics of the motion. For that, we propose a deep learning method for direct translation from human to robot motion. Our method does not require annotated paired human-to-robot motion data, which reduces the effort when adopting new robots. To this end, we first propose a cross-domain similarity metric to compare the poses from different domains (i.e., human and robot). Then, our method achieves the construction of a shared latent space via contrastive learning and decodes latent representations to robot motion control commands. The learned latent space exhibits expressiveness as it captures the motions precisely and allows direct motion control in the latent space. We showcase how to generate in-between motion through simple linear interpolation in the latent space between two projected human poses. Additionally, we conducted a comprehensive evaluation of robot control using diverse modality inputs, such as texts, RGB videos, and key-poses, which enhances the ease of robot control to users of all backgrounds. Finally, we compare our model with existing works and quantitatively and qualitatively demonstrate the effectiveness of our approach, enhancing natural human-robot communication and fostering trust in integrating robots into daily life.

This paper contributes a novel learning-based method for aggressive task-driven compression of depth images and their encoding as images tailored to collision prediction for robotic systems. A novel 3D image processing methodology is proposed that accounts for the robot's size in order to appropriately "inflate" the obstacles represented in the depth image and thus obtain the distance that can be traversed by the robot in a collision-free manner along any given ray within the camera frustum. Such depth-and-collision image pairs are used to train a neural network that follows the architecture of Variational Autoencoders to compress-and-transform the information in the original depth image to derive a latent representation that encodes the collision information for the given depth image. We compare our proposed task-driven encoding method with classical task-agnostic methods and demonstrate superior performance for the task of collision image prediction from extremely low-dimensional latent spaces. A set of comparative studies show that the proposed approach is capable of encoding depth image-and-collision image tuples from complex scenes with thin obstacles at long distances better than the classical methods at compression ratios as high as 4050:1.

We present a novel approach for finding multiple noisily embedded template graphs in a very large background graph. Our method builds upon the graph-matching-matched-filter technique proposed in Sussman et al., with the discovery of multiple diverse matchings being achieved by iteratively penalizing a suitable node-pair similarity matrix in the matched filter algorithm. In addition, we propose algorithmic speed-ups that greatly enhance the scalability of our matched-filter approach. We present theoretical justification of our methodology in the setting of correlated Erdos-Renyi graphs, showing its ability to sequentially discover multiple templates under mild model conditions. We additionally demonstrate our method's utility via extensive experiments both using simulated models and real-world dataset, include human brain connectomes and a large transactional knowledge base.

We develop an automated computational modeling framework for rapid gradient-based design of multistable soft mechanical structures composed of non-identical bistable unit cells with appropriate geometric parameterization. This framework includes a custom isogeometric analysis-based continuum mechanics solver that is robust and end-to-end differentiable, which enables geometric and material optimization to achieve a desired multistability pattern. We apply this numerical modeling approach in two dimensions to design a variety of multistable structures, accounting for various geometric and material constraints. Our framework demonstrates consistent agreement with experimental results, and robust performance in designing for multistability, which facilities soft actuator design with high precision and reliability.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.

北京阿比特科技有限公司