Publicly-verifiable quantum money has been a central focus in quantum cryptography. To date, no constructions for this primitive exist based on standard assumptions. In this study, we propose an alternative notion which we refer to as $\textit{quantum cheques}$ (QCs). A quantum cheque can be verified using a public-key but only by a single user. Specifically, the payer signs the quantum cheque for a particular recipient using their ID, and the recipient can validate it without the assistance of the bank, ensuring that the payer cannot assign the same cheque to another user with a different ID. Unlike quantum money, QCs only necessitate quantum communication when a cheque is issued by the bank, meaning all payments and deposits are entirely classical! We demonstrate how to construct QCs based on the well-studied learning-with-errors (LWE) assumption. In the process, we build two novel primitives which are of independent interest. Firstly, we construct $\textit{signatures with publicly-verifiable deletion}$ under LWE. This primitive enables the signing of a message $m$ such that the recipient can produce a classical string that publicly proves the inability to reproduce a signature of $m$. We then demonstrate how this primitive can be used to construct $\textit{2-message signature tokens}$. This primitive enables the production of a token that can be used to sign a single bit and then self-destructs. Finally, we show that 2-message signature tokens can be used to construct QCs.
We revisit the problem of online learning with individual fairness, where an online learner strives to maximize predictive accuracy while ensuring that similar individuals are treated similarly. We first extend the frameworks of Gillen et al. (2018); Bechavod et al. (2020), which rely on feedback from human auditors regarding fairness violations, as we consider auditing schemes that are capable of aggregating feedback from any number of auditors, using a rich class we term monotone aggregation functions. We then prove a characterization for such auditing schemes, practically reducing the analysis of auditing for individual fairness by multiple auditors to that of auditing by (instance-specific) single auditors. Using our generalized framework, we present an oracle-efficient algorithm achieving an upper bound frontier of $(\mathcal{O}(T^{1/2+2b}),\mathcal{O}(T^{3/4-b}))$ respectively for regret, number of fairness violations, for $0\leq b \leq 1/4$. We then study an online classification setting where label feedback is available for positively-predicted individuals only, and present an oracle-efficient algorithm achieving an upper bound frontier of $(\mathcal{O}(T^{2/3+2b}),\mathcal{O}(T^{5/6-b}))$ for regret, number of fairness violations, for $0\leq b \leq 1/6$. In both settings, our algorithms improve on the best known bounds for oracle-efficient algorithms. Furthermore, our algorithms offer significant improvements in computational efficiency, greatly reducing the number of required calls to an (offline) optimization oracle per round, to $\tilde{\mathcal{O}}(\alpha^{-2})$ in the full information setting, and $\tilde{\mathcal{O}}(\alpha^{-2} + k^2T^{1/3})$ in the partial information setting, where $\alpha$ is the sensitivity for reporting fairness violations, and $k$ is the number of individuals in a round.
We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization
Probabilistic circuits (PCs) have gained prominence in recent years as a versatile framework for discussing probabilistic models that support tractable queries and are yet expressive enough to model complex probability distributions. Nevertheless, tractability comes at a cost: PCs are less expressive than neural networks. In this paper we introduce probabilistic neural circuits (PNCs), which strike a balance between PCs and neural nets in terms of tractability and expressive power. Theoretically, we show that PNCs can be interpreted as deep mixtures of Bayesian networks. Experimentally, we demonstrate that PNCs constitute powerful function approximators.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.