Modern geometric approaches to analytical mechanics rest on a bundle structure of the configuration space. The connection on this bundle allows for an intrinsic splitting of the reduced Euler-Lagrange equations. Hamel's equations, on the other hand, provide a universal approach to non-holonomic mechanics in local coordinates. The link between Hamel's formulation and geometric approaches in local coordinates has not been discussed sufficiently. The reduced Euler-Lagrange equations as well as the curvature of the connection, are derived with Hamel's original formalism. Intrinsic splitting into Euler-Lagrange and Euler-Poincare equations, and inertial decoupling is achieved by means of the locked velocity. Various aspects of this method are discussed.
This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.
The ability of aerial robots to operate in the presence of failures is crucial in various applications that demand continuous operations, such as surveillance, monitoring, and inspection. In this paper, we propose a fault-tolerant control strategy for quadrotors that can adapt to single and dual complete rotor failures. Our approach augments a classic geometric tracking controller on $SO(3)\times\mathbb{R}^3$ to accommodate the effects of rotor failures. We provide an in-depth analysis of several attitude error metrics to identify the most appropriate design choice for fault-tolerant control strategies. To assess the effectiveness of these metrics, we evaluate trajectory tracking accuracies. Simulation results demonstrate the performance of the proposed approach.
We consider nonlinear delay differential and renewal equations with infinite delay. We extend the work of Gyllenberg et al, Appl. Math. Comput. (2018) by introducing a unifying abstract framework and derive a finite-dimensional approximating system via pseudospectral discretization. For renewal equations, via integration we consider a reformulation in a space of absolutely continuous functions that ensures that point evaluation is well defined. We prove the one-to-one correspondence of equilibria between the original equation and its approximation, and that linearization and discretization commute. Our most important result is the proof of convergence of the characteristic roots of the pseudospectral approximation of the linear(ized) equations, which ensures that the finite-dimensional system correctly reproduces the stability properties of the original linear equation if the dimension of the approximation is large enough. This result is illustrated with several numerical tests, which also demonstrate the effectiveness of the approach for the bifurcation analysis of equilibria of nonlinear equations.
In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell's equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with $Q_k$-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy. The approaches presented prove to be robust and allow the modeling of optical problems and the treatment of complex nonlinearities as well as geometries of various physical systems coupled with electromagnetic fields.
This article presents a new three-degree-of-freedom (3-DOF) parallel mechanism (PM) with two translations and one rotation (2T1R), designed based on the topological design theory of the parallel mechanism using position and orientation characteristics (POC). The PM is primarily intended for use in package sorting and delivery. The mobile platform of the PM moves along a translation axis, picks up objects from a conveyor belt, and tilts them to either side of the axis. We first calculate the PM's topological characteristics, such as the degree of freedom (DOF) and the degree of coupling, and provide its topological analytical formula to represent the topological information of the PM. Next, we solve the direct and inverse kinematic models based on the kinematic modelling principle using the topological features. The models are purely analytic and are broken down into a series of quadratic equations, making them suitable for use in an industrial robot. We also study the singular configurations to identify the serial and parallel singularities. Using the decoupling properties, we size the mechanism to address the package sorting and depositing problem using an algebraic approach. To determine the smallest segment lengths, we use a cylindrical algebraic decomposition to solve a system with inequalities.
Deep learning methods have gained considerable interest in the numerical solution of various partial differential equations (PDEs). One particular focus is on physics-informed neural networks (PINNs), which integrate physical principles into neural networks. This transforms the process of solving PDEs into optimization problems for neural networks. In order to address a collection of advection-diffusion equations (ADE) in a range of difficult circumstances, this paper proposes a novel network structure. This architecture integrates the solver, which is a multi-scale deep neural network (MscaleDNN) utilized in the PINN method, with a hard constraint technique known as HCPINN. This method introduces a revised formulation of the desired solution for advection-diffusion equations (ADE) by utilizing a loss function that incorporates the residuals of the governing equation and penalizes any deviations from the specified boundary and initial constraints. By surpassing the boundary constraints automatically, this method improves the accuracy and efficiency of the PINN technique. To address the ``spectral bias'' phenomenon in neural networks, a subnetwork structure of MscaleDNN and a Fourier-induced activation function are incorporated into the HCPINN, resulting in a hybrid approach called SFHCPINN. The effectiveness of SFHCPINN is demonstrated through various numerical experiments involving advection-diffusion equations (ADE) in different dimensions. The numerical results indicate that SFHCPINN outperforms both standard PINN and its subnetwork version with Fourier feature embedding. It achieves remarkable accuracy and efficiency while effectively handling complex boundary conditions and high-frequency scenarios in ADE.
The numerical solution of differential equations using machine learning-based approaches has gained significant popularity. Neural network-based discretization has emerged as a powerful tool for solving differential equations by parameterizing a set of functions. Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions. Training algorithms, including gradient descent and greedy algorithms, have been proposed to solve the resulting optimization problems. In this paper, we focus on the variational formulation of the problem and propose a Gauss- Newton method for computing the numerical solution. We provide a comprehensive analysis of the superlinear convergence properties of this method, along with a discussion on semi-regular zeros of the vanishing gradient. Numerical examples are presented to demonstrate the efficiency of the proposed Gauss-Newton method.
In stochastic zeroth-order optimization, a problem of practical relevance is understanding how to fully exploit the local geometry of the underlying objective function. We consider a fundamental setting in which the objective function is quadratic, and provide the first tight characterization of the optimal Hessian-dependent sample complexity. Our contribution is twofold. First, from an information-theoretic point of view, we prove tight lower bounds on Hessian-dependent complexities by introducing a concept called energy allocation, which captures the interaction between the searching algorithm and the geometry of objective functions. A matching upper bound is obtained by solving the optimal energy spectrum. Then, algorithmically, we show the existence of a Hessian-independent algorithm that universally achieves the asymptotic optimal sample complexities for all Hessian instances. The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions, which are enabled by a truncation method.
Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.