亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents joint motion planning of a vehicle with an attached rotating turret. The turret has a limited range as well as the field of view. The objective is capture a maneuvering target such that at the terminal time it is withing the field-of-view and range limits. Catering to it, we present a minimum effort guidance law that commensurate for the turn rate abilities of the vehicle and the turret. The guidance law is obtained using linearization about the collision triangle and admits an analytical solution. Simulation results are presented to exemplify the cooperation between the turret and the vehicle.

相關內容

Object detection algorithms particularly those based on YOLO have demonstrated remarkable efficiency in balancing speed and accuracy. However, their application in brain tumour detection remains underexplored. This study proposes RepVGG-GELAN, a novel YOLO architecture enhanced with RepVGG, a reparameterized convolutional approach for object detection tasks particularly focusing on brain tumour detection within medical images. RepVGG-GELAN leverages the RepVGG architecture to improve both speed and accuracy in detecting brain tumours. Integrating RepVGG into the YOLO framework aims to achieve a balance between computational efficiency and detection performance. This study includes a spatial pyramid pooling-based Generalized Efficient Layer Aggregation Network (GELAN) architecture which further enhances the capability of RepVGG. Experimental evaluation conducted on a brain tumour dataset demonstrates the effectiveness of RepVGG-GELAN surpassing existing RCS-YOLO in terms of precision and speed. Specifically, RepVGG-GELAN achieves an increased precision of 4.91% and an increased AP50 of 2.54% over the latest existing approach while operating at 240.7 GFLOPs. The proposed RepVGG-GELAN with GELAN architecture presents promising results establishing itself as a state-of-the-art solution for accurate and efficient brain tumour detection in medical images. The implementation code is publicly available at //github.com/ThensiB/RepVGG-GELAN.

The integration of autonomous vehicles (AVs) into the existing transportation infrastructure offers a promising solution to alleviate congestion and enhance mobility. This research explores a novel approach to traffic optimization by employing a multi-agent rollout approach within a mixed autonomy environment. The study concentrates on coordinating the speed of human-driven vehicles by longitudinally controlling AVs, aiming to dynamically optimize traffic flow and alleviate congestion at highway bottlenecks in real-time. We model the problem as a decentralized partially observable Markov decision process (Dec-POMDP) and propose an improved multi-agent rollout algorithm. By employing agent-by-agent policy iterations, our approach implicitly considers cooperation among multiple agents and seamlessly adapts to complex scenarios where the number of agents dynamically varies. Validated in a real-world network with varying AV penetration rates and traffic flow, the simulations demonstrate that the multi-agent rollout algorithm significantly enhances performance, reducing average travel time on bottleneck segments by 9.42% with a 10% AV penetration rate.

Virtual Reality (VR) has recently gained traction with many new and ever more affordable devices being released. The increase in popularity of this paradigm of interaction has given birth to new applications and has attracted casual consumers to experience VR. Providing a self-embodied representation (avatar) of users' full bodies inside shared virtual spaces can improve the VR experience and make it more engaging to both new and experienced users . This is especially important in fully immersive systems, where the equipment completely occludes the real world making self awareness problematic. Indeed, the feeling of presence of the user is highly influenced by their virtual representations, even though small flaws could lead to uncanny valley side-effects. Following previous research, we would like to assess whether using a third-person perspective could also benefit the VR experience, via an improved spatial awareness of the user's virtual surroundings. In this paper we investigate realism and perspective of self-embodied representation in VR setups in natural tasks, such as walking and avoiding obstacles. We compare both First and Third-Person perspectives with three different levels of realism in avatar representation. These range from a stylized abstract avatar, to a "realistic" mesh-based humanoid representation and a point-cloud rendering. The latter uses data captured via depth-sensors and mapped into a virtual self inside the Virtual Environment. We present a throughout evaluation and comparison of these different representations, describing a series of guidelines for self-embodied VR applications. The effects of the uncanny valley are also discussed in the context of navigation and reflex-based tasks.

The development of connected autonomous vehicles (CAVs) facilitates the enhancement of traffic efficiency in complicated scenarios. In unsignalized roundabout scenarios, difficulties remain unsolved in developing an effective and efficient coordination strategy for CAVs. In this paper, we formulate the cooperative autonomous driving problem of CAVs in the roundabout scenario as a constrained optimal control problem, and propose a computationally-efficient parallel optimization framework to generate strategies for CAVs such that the travel efficiency is improved with hard safety guarantees. All constraints involved in the roundabout scenario are addressed appropriately with convex approximation, such that the convexity property of the reformulated optimization problem is exhibited. Then, a parallel optimization algorithm is presented to solve the reformulated optimization problem, where an embodied iterative nearest neighbor search strategy to determine the optimal passing sequence in the roundabout scenario. It is noteworthy that the travel efficiency in the roundabout scenario is enhanced and the computation burden is considerably alleviated with the innovation development. We also examine the proposed method in CARLA simulator and perform thorough comparisons with a rule-based baseline and the commonly used IPOPT optimization solver to demonstrate the effectiveness and efficiency of the proposed approach.

Trajectory prediction is a cornerstone in autonomous driving (AD), playing a critical role in enabling vehicles to navigate safely and efficiently in dynamic environments. To address this task, this paper presents a novel trajectory prediction model tailored for accuracy in the face of heterogeneous and uncertain traffic scenarios. At the heart of this model lies the Characterized Diffusion Module, an innovative module designed to simulate traffic scenarios with inherent uncertainty. This module enriches the predictive process by infusing it with detailed semantic information, thereby enhancing trajectory prediction accuracy. Complementing this, our Spatio-Temporal (ST) Interaction Module captures the nuanced effects of traffic scenarios on vehicle dynamics across both spatial and temporal dimensions with remarkable effectiveness. Demonstrated through exhaustive evaluations, our model sets a new standard in trajectory prediction, achieving state-of-the-art (SOTA) results on the Next Generation Simulation (NGSIM), Highway Drone (HighD), and Macao Connected Autonomous Driving (MoCAD) datasets across both short and extended temporal spans. This performance underscores the model's unparalleled adaptability and efficacy in navigating complex traffic scenarios, including highways, urban streets, and intersections.

Platooning of connected and autonomous vehicles (CAVs) plays a vital role in modernizing highways, ushering in enhanced efficiency and safety. This paper explores the significance of platooning in smart highways, employing a coupled partial differential equation (PDE) and ordinary differential equation (ODE) model to elucidate the complex interaction between bulk traffic flow and CAV platoons. Our study focuses on developing a Dyna-style planning and learning framework tailored for platoon control, with a specific goal of reducing fuel consumption. By harnessing the coupled PDE-ODE model, we improve data efficiency in Dyna-style learning through virtual experiences. Simulation results validate the effectiveness of our macroscopic model in modeling platoons within mixed-autonomy settings, demonstrating a notable $10.11\%$ reduction in vehicular fuel consumption compared to conventional approaches.

Adaptive Cruise Control ACC can change the speed of the ego vehicle to maintain a safe distance from the following vehicle automatically. The primary purpose of this research is to use cutting-edge computing approaches to locate and track vehicles in real time under various conditions to achieve a safe ACC. The paper examines the extension of ACC employing depth cameras and radar sensors within Autonomous Vehicles AVs to respond in real time by changing weather conditions using the Car Learning to Act CARLA simulation platform at noon. The ego vehicle controller's decision to accelerate or decelerate depends on the speed of the leading ahead vehicle and the safe distance from that vehicle. Simulation results show that a Proportional Integral Derivative PID control of autonomous vehicles using a depth camera and radar sensors reduces the speed of the leading vehicle and the ego vehicle when it rains. In addition, longer travel time was observed for both vehicles in rainy conditions than in dry conditions. Also, PID control prevents the leading vehicle from rear collisions

Connected cars are susceptible to cyberattacks. Security and safety of future vehicles highly depend on a holistic protection of automotive components, of which the time-sensitive backbone network takes a significant role. These onboard Time-Sensitive Networks (TSNs) require monitoring for safety and -- as versatile platforms to host Network Anomaly Detection Systems (NADSs) -- for security. Still a thorough evaluation of anomaly detection methods in the context of hard real-time operations, automotive protocol stacks, and domain specific attack vectors is missing along with appropriate input datasets. In this paper, we present an assessment framework that allows for reproducible, comparable, and rapid evaluation of detection algorithms. It is based on a simulation toolchain, which contributes configurable topologies, traffic streams, anomalies, attacks, and detectors. We demonstrate the assessment of NADSs in a comprehensive in-vehicular network with its communication flows, on which we model traffic anomalies. We evaluate exemplary detection mechanisms and reveal how the detection performance is influenced by different combinations of TSN traffic flows and anomaly types. Our approach translates to other real-time Ethernet domains, such as industrial facilities, airplanes, and UAVs.

Connected vehicles, facilitated by Vehicle-to-Vehicle (V2V) communications, play a key role in enhancing road safety and traffic efficiency. However, V2V communications primarily rely on wireless protocols, such as Wi-Fi, that require additional collision avoidance mechanisms to better ensure bounded latency and reliability in critical scenarios. In this paper, we introduce a novel approach to address the challenge of message collision in V2V platooning through a slotted-based solution inspired by Time-Sensitive Networking (TSN), which is gaining momentum for in-vehicle networks. To this end, we present a controller, named TSNCtl, operating at the application level of the vehicular communications stack. TSNCtl employs a finite state machine (FSM) to manage platoon formation and slot-based scheduling for message dissemination. The reported evaluation results, based on the OMNeT++ simulation framework and INET library, demonstrate the effectiveness of TSNCtl in reducing packet collisions across various scenarios. Specifically, our experiments reveal a significant reduction in packet collisions compared to the CSMA-CA baseline used in traditional Wi-Fi-based protocols (e.g., IEEE 802.11p): for instance, with slot lengths of 2 ms, our solution achieves an average collision rate under 1%, compared to up to 50% for the baseline case.

Traditional trajectory planning methods for autonomous vehicles have several limitations. For example, heuristic and explicit simple rules limit generalizability and hinder complex motions. These limitations can be addressed using reinforcement learning-based trajectory planning. However, reinforcement learning suffers from unstable learning and existing reinforcement learning-based trajectory planning methods do not consider the uncertainties. Thus, this paper, proposes a reinforcement learning-based trajectory planning method for autonomous vehicles. The proposed method involves an iterative reward prediction approach that iteratively predicts expectations of future states. These predicted states are then used to forecast rewards and integrated into the learning process to enhance stability. Additionally, a method is proposed that utilizes uncertainty propagation to make the reinforcement learning agent aware of uncertainties.The proposed method was evaluated using the CARLA simulator. Compared to the baseline methods, the proposed method reduced the collision rate by 60.17%, and increased the average reward by 30.82 times. A video of the proposed method is available at //www.youtube.com/watch?v=PfDbaeLfcN4.

北京阿比特科技有限公司