亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning techniques for point clouds have achieved strong performance on a range of 3D vision tasks. However, it is costly to annotate large-scale point sets, making it critical to learn generalizable representations that can transfer well across different point sets. In this paper, we study a new problem of 3D Domain Generalization (3DDG) with the goal to generalize the model to other unseen domains of point clouds without any access to them in the training process. It is a challenging problem due to the substantial geometry shift from simulated to real data, such that most existing 3D models underperform due to overfitting the complete geometries in the source domain. We propose to tackle this problem via MetaSets, which meta-learns point cloud representations from a group of classification tasks on carefully-designed transformed point sets containing specific geometry priors. The learned representations are more generalizable to various unseen domains of different geometries. We design two benchmarks for Sim-to-Real transfer of 3D point clouds. Experimental results show that MetaSets outperforms existing 3D deep learning methods by large margins.

相關內容

The ability to grasp objects is an essential skill that enables many robotic manipulation tasks. Recent works have studied point cloud-based methods for object grasping by starting from simulated datasets and have shown promising performance in real-world scenarios. Nevertheless, many of them still rely on ad-hoc geometric heuristics to generate grasp candidates, which fail to generalize to objects with significantly different shapes with respect to those observed during training. Several approaches exploit complex multi-stage learning strategies and local neighborhood feature extraction while ignoring semantic global information. Furthermore, they are inefficient in terms of number of training samples and time required for inference. In this paper, we propose an end-to-end learning solution to generate 6-DOF parallel-jaw grasps starting from the 3D partial view of the object. Our Learning to Grasp (L2G) method gathers information from the input point cloud through a new procedure that combines a differentiable sampling strategy to identify the visible contact points, with a feature encoder that leverages local and global cues. Overall, L2G is guided by a multi-task objective that generates a diverse set of grasps by optimizing contact point sampling, grasp regression, and grasp classification. With a thorough experimental analysis, we show the effectiveness of L2G as well as its robustness and generalization abilities.

The extraction of text information in videos serves as a critical step towards semantic understanding of videos. It usually involved in two steps: (1) text recognition and (2) text classification. To localize texts in videos, we can resort to large numbers of text recognition methods based on OCR technology. However, to our knowledge, there is no existing work focused on the second step of video text classification, which will limit the guidance to downstream tasks such as video indexing and browsing. In this paper, we are the first to address this new task of video text classification by fusing multimodal information to deal with the challenging scenario where different types of video texts may be confused with various colors, unknown fonts and complex layouts. In addition, we tailor a specific module called CorrelationNet to reinforce feature representation by explicitly extracting layout information. Furthermore, contrastive learning is utilized to explore inherent connections between samples using plentiful unlabeled videos. Finally, we construct a new well-defined industrial dataset from the news domain, called TI-News, which is dedicated to building and evaluating video text recognition and classification applications. Extensive experiments on TI-News demonstrate the effectiveness of our method.

With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, due to the imbalance and distortion of Martian data, the performance of existing computer vision models is unsatisfactory. In this paper, we introduce a semi-supervised framework for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive learning is a powerful representation learning technique. However, there is too much information overlap between Martian data samples, leading to a contradiction between contrastive learning and Martian data. Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas. Experimental results show that our learning strategies can improve the classification and segmentation models by a large margin and outperform state-of-the-art approaches.

Zero-shot intent classification is a vital and challenging task in dialogue systems, which aims to deal with numerous fast-emerging unacquainted intents without annotated training data. To obtain more satisfactory performance, the crucial points lie in two aspects: extracting better utterance features and strengthening the model generalization ability. In this paper, we propose a simple yet effective meta-learning paradigm for zero-shot intent classification. To learn better semantic representations for utterances, we introduce a new mixture attention mechanism, which encodes the pertinent word occurrence patterns by leveraging the distributional signature attention and multi-layer perceptron attention simultaneously. To strengthen the transfer ability of the model from seen classes to unseen classes, we reformulate zero-shot intent classification with a meta-learning strategy, which trains the model by simulating multiple zero-shot classification tasks on seen categories, and promotes the model generalization ability with a meta-adapting procedure on mimic unseen categories. Extensive experiments on two real-world dialogue datasets in different languages show that our model outperforms other strong baselines on both standard and generalized zero-shot intent classification tasks.

This paper presents a distributed scalable multi-robot planning algorithm for informed sampling of quasistatic spatial fields. We address the problem of efficient data collection using multiple autonomous vehicles and consider the effects of communication between multiple robots, acting independently, on the overall sampling performance of the team. We focus on the distributed sampling problem where the robots operate independent of their teammates, but have the ability to communicate their current state to other neighbors within a fixed communication range. Our proposed approach is scalable and adaptive to various environmental scenarios, changing robot team configurations, and runs in real-time, which are important features for many real-world applications. We compare the performance of our proposed algorithm to baseline strategies through simulated experiments that utilize models derived from both synthetic and field deployment data. The results show that our sampling algorithm is efficient even when robots in the team are operating with a limited communication range, thus demonstrating the scalability of our method in sampling large-scale environments.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper introduces a new fundamental characteristic, \ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal'' and ``Plants'' have a large semantic scale while ``Elk'' has a much smaller one. Under a small semantic scale, two different elks may look quite \emph{different} to each other . However, under a large semantic scale (\eg, animals and plants), these two elks should be measured as being \emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, \ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, \emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at //github.com/SupetZYK/DynamicMetricLearning.

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司