亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are preferred in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper we show that it is possible to use improper GP priors with infinite variance to define processes that are stationary but not mean reverting. To this aim, we use of non-positive kernels that can only be defined in this limit regime. The resulting posterior distributions can be computed analytically and it involves a simple correction of the usual formulas. The main contribution of the paper is the introduction of a large family of smooth non-reverting covariance functions that closely resemble the kernels commonly used in the GP literature (e.g. squared exponential and Mat\'ern class). By analyzing both synthetic and real data, we demonstrate that these non-positive kernels solve some known pathologies of mean reverting GP regression while retaining most of the favorable properties of ordinary smooth stationary kernels.

相關內容

We address the problem of testing conditional mean and conditional variance for non-stationary data. We build e-values and p-values for four types of non-parametric composite hypotheses with specified mean and variance as well as other conditions on the shape of the data-generating distribution. These shape conditions include symmetry, unimodality, and their combination. Using the obtained e-values and p-values, we construct tests via e-processes, also known as testing by betting, as well as some tests based on combining p-values for comparison. Although we mainly focus on one-sided tests, the two-sided test for the mean is also studied. Simulation and empirical studies are conducted under a few settings, and they illustrate features of the methods based on e-processes.

Operator splitting methods tailored to coupled linear port-Hamiltonian systems are developed. We present algorithms that are able to exploit scalar coupling, as well as multirate potential of these coupled systems. The obtained algorithms preserve the dissipative structure of the overall system and are convergent of second order. Numerical results for coupled mass-spring-damper chains illustrate the computational efficiency of the splitting methods compared to a straight-forward application of the implicit midpoint rule to the overall system.

Fourier partial sum approximations yield exponential accuracy for smooth and periodic functions, but produce the infamous Gibbs phenomenon for non-periodic ones. Spectral reprojection resolves the Gibbs phenomenon by projecting the Fourier partial sum onto a Gibbs complementary basis, often prescribed as the Gegenbauer polynomials. Noise in the Fourier data and the Runge phenomenon both degrade the quality of the Gegenbauer reconstruction solution, however. Motivated by its theoretical convergence properties, this paper proposes a new Bayesian framework for spectral reprojection, which allows a greater understanding of the impact of noise on the reprojection method from a statistical point of view. We are also able to improve the robustness with respect to the Gegenbauer polynomials parameters. Finally, the framework provides a mechanism to quantify the uncertainty of the solution estimate.

Estimating parameters of a diffusion process given continuous-time observations of the process via maximum likelihood approaches or, online, via stochastic gradient descent or Kalman filter formulations constitutes a well-established research area. It has also been established previously that these techniques are, in general, not robust to perturbations in the data in the form of temporal correlations. While the subject is relatively well understood and appropriate modifications have been suggested in the context of multi-scale diffusion processes and their reduced model equations, we consider here an alternative setting where a second-order diffusion process in positions and velocities is only observed via its positions. In this note, we propose a simple modification to standard stochastic gradient descent and Kalman filter formulations, which eliminates the arising systematic estimation biases. The modification can be extended to standard maximum likelihood approaches and avoids computation of previously proposed correction terms.

Noninformative priors constructed for estimation purposes are usually not appropriate for model selection and testing. The methodology of integral priors was developed to get prior distributions for Bayesian model selection when comparing two models, modifying initial improper reference priors. We propose a generalization of this methodology to more than two models. Our approach adds an artificial copy of each model under comparison by compactifying the parametric space and creating an ergodic Markov chain across all models that returns the integral priors as marginals of the stationary distribution. Besides the garantee of their existance and the lack of paradoxes attached to estimation reference priors, an additional advantage of this methodology is that the simulation of this Markov chain is straightforward as it only requires simulations of imaginary training samples for all models and from the corresponding posterior distributions. This renders its implementation automatic and generic, both in the nested case and in the nonnested case.

Gaussian process regression is a frequently used statistical method for flexible yet fully probabilistic non-linear regression modeling. A common obstacle is its computational complexity which scales poorly with the number of observations. This is especially an issue when applying Gaussian process models to multiple functions simultaneously in various applications of functional data analysis. We consider a multi-level Gaussian process regression model where a common mean function and individual subject-specific deviations are modeled simultaneously as latent Gaussian processes. We derive exact analytic and computationally efficient expressions for the log-likelihood function and the posterior distributions in the case where the observations are sampled on either a completely or partially regular grid. This enables us to fit the model to large data sets that are currently computationally inaccessible using a standard implementation. We show through a simulation study that our analytic expressions are several orders of magnitude faster compared to a standard implementation, and we provide an implementation in the probabilistic programming language Stan.

Due to their flexibility and theoretical tractability Gaussian process (GP) regression models have become a central topic in modern statistics and machine learning. While the true posterior in these models is given explicitly, numerical evaluations depend on the inversion of the augmented kernel matrix $ K + \sigma^2 I $, which requires up to $ O(n^3) $ operations. For large sample sizes n, which are typically given in modern applications, this is computationally infeasible and necessitates the use of an approximate version of the posterior. Although such methods are widely used in practice, they typically have very limtied theoretical underpinning. In this context, we analyze a class of recently proposed approximation algorithms from the field of Probabilistic numerics. They can be interpreted in terms of Lanczos approximate eigenvectors of the kernel matrix or a conjugate gradient approximation of the posterior mean, which are particularly advantageous in truly large scale applications, as they are fundamentally only based on matrix vector multiplications amenable to the GPU acceleration of modern software frameworks. We combine result from the numerical analysis literature with state of the art concentration results for spectra of kernel matrices to obtain minimax contraction rates. Our theoretical findings are illustrated by numerical experiments.

We study the generalization error of statistical learning algorithms in a non-i.i.d. setting, where the training data is sampled from a stationary mixing process. We develop an analytic framework for this scenario based on a reduction to online learning with delayed feedback. In particular, we show that the existence of an online learning algorithm with bounded regret (against a fixed statistical learning algorithm in a specially constructed game of online learning with delayed feedback) implies low generalization error of said statistical learning method even if the data sequence is sampled from a mixing time series. The rates demonstrate a trade-off between the amount of delay in the online learning game and the degree of dependence between consecutive data points, with near-optimal rates recovered in a number of well-studied settings when the delay is tuned appropriately as a function of the mixing time of the process.

Clustering analysis of functional data, which comprises observations that evolve continuously over time or space, has gained increasing attention across various scientific disciplines. Practical applications often involve functional data that are contaminated with measurement errors arising from imprecise instruments, sampling errors, or other sources. These errors can significantly distort the inherent data structure, resulting in erroneous clustering outcomes. In this paper, we propose a simulation-based approach designed to mitigate the impact of measurement errors. Our proposed method estimates the distribution of functional measurement errors through repeated measurements. Subsequently, the clustering algorithm is applied to simulated data generated from the conditional distribution of the unobserved true functional data given the observed contaminated functional data, accounting for the adjustments made to rectify measurement errors. We illustrate through simulations show that the proposed method has improved numerical performance than the naive methods that neglect such errors. Our proposed method was applied to a childhood obesity study, giving more reliable clustering results

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different hardware and software architectures.

北京阿比特科技有限公司