Automated organ at risk (OAR) segmentation is crucial for radiation therapy planning in CT scans, but the generated contours by automated models can be inaccurate, potentially leading to treatment planning issues. The reasons for these inaccuracies could be varied, such as unclear organ boundaries or inaccurate ground truth due to annotation errors. To improve the model's performance, it is necessary to identify these failure cases during the training process and to correct them with some potential post-processing techniques. However, this process can be time-consuming, as traditionally it requires manual inspection of the predicted output. This paper proposes a method to automatically identify failure cases by setting a threshold for the combination of Dice and Hausdorff distances. This approach reduces the time-consuming task of visually inspecting predicted outputs, allowing for faster identification of failure case candidates. The method was evaluated on 20 cases of six different organs in CT images from clinical expert curated datasets. By setting the thresholds for the Dice and Hausdorff distances, the study was able to differentiate between various states of failure cases and evaluate over 12 cases visually. This thresholding approach could be extended to other organs, leading to faster identification of failure cases and thereby improving the quality of radiation therapy planning.
To determine the effectiveness of metaheuristic Differential Evolution optimization strategy for inventory management (IM) in the context of stochastic demand, this empirical study undertakes a thorough investigation. The primary objective is to discern the most effective strategy for minimizing inventory costs within the context of uncertain demand patterns. Inventory costs refer to the expenses associated with holding and managing inventory within a business. The approach combines a continuous review of IM policies with a Monte Carlo Simulation (MCS). To find the optimal solution, the study focuses on meta-heuristic approaches and compares multiple algorithms. The outcomes reveal that the Differential Evolution (DE) algorithm outperforms its counterparts in optimizing IM. To fine-tune the parameters, the study employs the Latin Hypercube Sampling (LHS) statistical method. To determine the final solution, a method is employed in this study which combines the outcomes of multiple independent DE optimizations, each initiated with different random initial conditions. This approach introduces a novel and promising dimension to the field of inventory management, offering potential enhancements in performance and cost efficiency, especially in the presence of stochastic demand patterns.
Dynamic treatment regimes (DTR) are sequential decision rules corresponding to several stages of intervention. Each rule maps patients' covariates to optional treatments. The optimal dynamic treatment regime is the one that maximizes the mean outcome of interest if followed by the overall population. Motivated by a clinical study on advanced colorectal cancer with traditional Chinese medicine, we propose a censored C-learning (CC-learning) method to estimate the dynamic treatment regime with multiple treatments using survival data. To address the challenges of multiple stages with right censoring, we modify the backward recursion algorithm in order to adapt to the flexible number and timing of treatments. For handling the problem of multiple treatments, we propose a framework from the classification perspective by transferring the problem of optimization with multiple treatment comparisons into an example-dependent cost-sensitive classification problem. With classification and regression tree (CART) as the classifier, the CC-learning method can produce an estimated optimal DTR with good interpretability. We theoretically prove the optimality of our method and numerically evaluate its finite sample performances through simulation. With the proposed method, we identify the interpretable tree treatment regimes at each stage for the advanced colorectal cancer treatment data from Xiyuan Hospital.
Outbreaks of hand-foot-and-mouth disease(HFMD) have been associated with significant morbidity and, in severe cases, mortality. Accurate forecasting of daily admissions of pediatric HFMD patients is therefore crucial for aiding the hospital in preparing for potential outbreaks and mitigating nosocomial transmissions. To address this pressing need, we propose a novel transformer-based model with a U-net shape, utilizing the patching strategy and the joint prediction strategy that capitalizes on insights from herpangina, a disease closely correlated with HFMD. This model also integrates representation learning by introducing reconstruction loss as an auxiliary loss. The results show that our U-net Patching Time Series Transformer (UPTST) model outperforms existing approaches in both long- and short-arm prediction accuracy of HFMD at hospital-level. Furthermore, the exploratory extension experiments show that the model's capabilities extend beyond prediction of infectious disease, suggesting broader applicability in various domains.
The goal of motion understanding is to establish a reliable mapping between motion and action semantics, while it is a challenging many-to-many problem. An abstract action semantic (i.e., walk forwards) could be conveyed by perceptually diverse motions (walk with arms up or swinging), while a motion could carry different semantics w.r.t. its context and intention. This makes an elegant mapping between them difficult. Previous attempts adopted direct-mapping paradigms with limited reliability. Also, current automatic metrics fail to provide reliable assessments of the consistency between motions and action semantics. We identify the source of these problems as the significant gap between the two modalities. To alleviate this gap, we propose Kinematic Phrases (KP) that take the objective kinematic facts of human motion with proper abstraction, interpretability, and generality characteristics. Based on KP as a mediator, we can unify a motion knowledge base and build a motion understanding system. Meanwhile, KP can be automatically converted from motions and to text descriptions with no subjective bias, inspiring Kinematic Prompt Generation (KPG) as a novel automatic motion generation benchmark. In extensive experiments, our approach shows superiority over other methods. Our code and data would be made publicly available at //foruck.github.io/KP.
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular processes. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
The potential of deep neural networks in skin lesion classification has already been demonstrated to be on-par if not superior to the dermatologists diagnosis. However, the performance of these models usually deteriorates when the test data differs significantly from the training data (i.e. domain shift). This concerning limitation for models intended to be used in real-world skin lesion classification tasks poses a risk to patients. For example, different image acquisition systems or previously unseen anatomical sites on the patient can suffice to cause such domain shifts. Mitigating the negative effect of such shifts is therefore crucial, but developing effective methods to address domain shift has proven to be challenging. In this study, we carry out an in-depth analysis of eight different unsupervised domain adaptation methods to analyze their effectiveness in improving generalization for dermoscopic datasets. To ensure robustness of our findings, we test each method on a total of ten distinct datasets, thereby covering a variety of possible domain shifts. In addition, we investigated which factors in the domain shifted datasets have an impact on the effectiveness of domain adaptation methods. Our findings show that all of the eight domain adaptation methods result in improved AUPRC for the majority of analyzed datasets. Altogether, these results indicate that unsupervised domain adaptations generally lead to performance improvements for the binary melanoma-nevus classification task regardless of the nature of the domain shift. However, small or heavily imbalanced datasets lead to a reduced conformity of the results due to the influence of these factors on the methods performance.
Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at //github.com/RulinShao/LightSeq.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.