This paper considers the quality-of-service (QoS)-based joint beamforming and compression design problem in the downlink cooperative cellular network, where multiple relay-like base stations (BSs), connected to the central processor via rate-limited fronthaul links, cooperatively transmit messages to the users. The problem of interest is formulated as the minimization of the total transmit power of the BSs, subject to all users' signal-to-interference-plus-noise ratio (SINR) constraints and all BSs' fronthaul rate constraints. In this paper, we first show that there is no duality gap between the considered joint optimization problem and its Lagrangian dual by showing the tightness of its semidefinite relaxation (SDR). Then, we propose an efficient algorithm based on the above duality result for solving the considered problem. The proposed algorithm judiciously exploits the special structure of an enhanced Karush-Kuhn-Tucker (KKT) conditions of the considered problem and finds the solution that satisfies the enhanced KKT conditions via two fixed point iterations. Two key features of the proposed algorithm are: (1) it is able to detect whether the considered problem is feasible or not and find its globally optimal solution when it is feasible; (2) it is highly efficient because both of the fixed point iterations in the proposed algorithm are linearly convergent and evaluating the functions in the fixed point iterations are computationally cheap. Numerical results show the global optimality and efficiency of the proposed algorithm.
This paper proposes an elegant optimization framework consisting of a mix of linear-matrix-inequality and second-order-cone constraints. The proposed framework generalizes the semidefinite relaxation (SDR) enabled solution to the typical transmit beamforming problems presented in the form of quadratically constrained quadratic programs (QCQPs) in the literature. It is proved that the optimization problems subsumed under the framework always admit a rank-one optimal solution when they are feasible and their optimal solutions are not trivial. This finding indicates that the relaxation is tight as the optimal solution of the original beamforming QCQP can be straightforwardly obtained from that of the SDR counterpart without any loss of optimality. Four representative examples of transmit beamforming, i.e., transmit beamforming with perfect channel state information (CSI), transmit beamforming with imperfect CSI, chance-constraint approach for imperfect CSI, and reconfigurable-intelligent-surface (RIS) aided beamforming, are shown to demonstrate how the proposed optimization framework can be realized in deriving the SDR counterparts for different beamforming designs.
Collaborative filtering-based recommender systems (RecSys) rely on learning representations for users and items to predict preferences accurately. Representation learning on the hypersphere is a promising approach due to its desirable properties, such as alignment and uniformity. However, the sparsity issue arises when it encounters RecSys. To address this issue, we propose a novel approach, graph-based alignment and uniformity (GraphAU), that explicitly considers high-order connectivities in the user-item bipartite graph. GraphAU aligns the user/item embedding to the dense vector representations of high-order neighbors using a neighborhood aggregator, eliminating the need to compute the burdensome alignment to high-order neighborhoods individually. To address the discrepancy in alignment losses, GraphAU includes a layer-wise alignment pooling module to integrate alignment losses layer-wise. Experiments on four datasets show that GraphAU significantly alleviates the sparsity issue and achieves state-of-the-art performance. We open-source GraphAU at //github.com/YangLiangwei/GraphAU.
This paper proposes a solution for energy-efficient communication in reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) networks. The limited battery life of UAVs is a major concern for their sustainable operation, and RIS has emerged as a promising solution to reducing the energy consumption of communication systems. The paper formulates the problem of maximizing the energy efficiency of the network as a mixed integer non-linear program, in which UAV placement, UAV beamforming, On-Off strategy of RIS elements, and phase shift of RIS elements are optimized. The proposed solution utilizes the block coordinate descent approach and a combination of continuous and binary genetic algorithms. Moreover, for optimizing the UAV placement, Adam optimizer is used. The simulation results show that the proposed solution outperforms the existing literature. Specifically, we compared the proposed method with the successive convex approximation (SCA) approach for optimizing the phase shift of RIS elements.
Automatic speech recognition (ASR) technology can aid in the detection, monitoring, and assessment of depressive symptoms in individuals. ASR systems have been used as a tool to analyze speech patterns and characteristics that are indicative of depression. Depression affects not only a person's mood but also their speech patterns. Individuals with depression may exhibit changes in speech, such as slower speech rate, longer pauses, reduced pitch variability, and decreased overall speech fluency. Despite the growing use of machine learning in diagnosing depression, there is a lack of studies addressing the issue of relapse. Furthermore, previous research on relapse prediction has primarily focused on clinical variables and has not taken into account other factors such as verbal and non-verbal cues. Another major challenge in depression relapse research is the scarcity of publicly available datasets. To overcome these issues, we propose a one-shot learning framework for detecting depression relapse from speech. We define depression relapse as the similarity between the speech audio and textual encoding of a subject and that of a depressed individual. To detect depression relapse based on this definition, we employ a Siamese neural network that models the similarity between of two instances. Our proposed approach shows promising results and represents a new advancement in the field of automatic depression relapse detection and mental disorders monitoring.
Most of the research in content-based image retrieval (CBIR) focus on developing robust feature representations that can effectively retrieve instances from a database of images that are visually similar to a query. However, the retrieved images sometimes contain results that are not semantically related to the query. To address this, we propose a method for CBIR that captures both visual and semantic similarity using a visual hierarchy. The hierarchy is constructed by merging classes with overlapping features in the latent space of a deep neural network trained for classification, assuming that overlapping classes share high visual and semantic similarities. Finally, the constructed hierarchy is integrated into the distance calculation metric for similarity search. Experiments on standard datasets: CUB-200-2011 and CIFAR100, and a real-life use case using diatom microscopy images show that our method achieves superior performance compared to the existing methods on image retrieval.
Recommendation engine suggest content, product or services to the user by using machine learning algorithm. This paper proposed a content-based recommendation engine for providing video suggestion to the user based on their previous interests and choices. We will use TF-IDF text vectorization method to determine the relevance of words in a document. Then we will find out the similarity between each content by calculating cosine similarity between them. Finally, engine will recommend videos to the users based on the obtained similarity score value. In addition, we will measure the engine's performance by computing precision, recall, and F1 core of the proposed system.
This paper investigates the performance of the Large Language Models (LLMs) ChatGPT-3.5 and GPT-4 in solving introductory programming tasks. Based on the performance, implications for didactic scenarios and assessment formats utilizing LLMs are derived. For the analysis, 72 Python tasks for novice programmers were selected from the free site CodingBat. Full task descriptions were used as input to the LLMs, while the generated replies were evaluated using CodingBat's unit tests. In addition, the general availability of textual explanations and program code was analyzed. The results show high scores of 94.4 to 95.8% correct responses and reliable availability of textual explanations and program code, which opens new ways to incorporate LLMs into programming education and assessment.
This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.