亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes an elegant optimization framework consisting of a mix of linear-matrix-inequality and second-order-cone constraints. The proposed framework generalizes the semidefinite relaxation (SDR) enabled solution to the typical transmit beamforming problems presented in the form of quadratically constrained quadratic programs (QCQPs) in the literature. It is proved that the optimization problems subsumed under the framework always admit a rank-one optimal solution when they are feasible and their optimal solutions are not trivial. This finding indicates that the relaxation is tight as the optimal solution of the original beamforming QCQP can be straightforwardly obtained from that of the SDR counterpart without any loss of optimality. Four representative examples of transmit beamforming, i.e., transmit beamforming with perfect channel state information (CSI), transmit beamforming with imperfect CSI, chance-constraint approach for imperfect CSI, and reconfigurable-intelligent-surface (RIS) aided beamforming, are shown to demonstrate how the proposed optimization framework can be realized in deriving the SDR counterparts for different beamforming designs.

相關內容

Software Engineering concepts such as version control, continuous integration, and unit testing are often not presented in college computer science curriculums until the third year of study, after completing several semesters of programming courses. Throughout the summer of 2023, two high school students volunteered in our lab at Wayne State University where I'm a graduate research assistant and Ph.D. student in computer science. The students had taken AP Computer Science but had no prior experience with software engineering or software testing. This paper documents our experience devising a group project to teach the requisite software engineering skills to implement automated tests that meaningfully contribute to open-source scientific computing projects developed in connection with our lab. We describe the concepts covered, tools used, and software tests written in this early introduction to software engineering while maintaining shared emphases on education and the deployment of our work.

Recent research has shown that independently trained encoders and decoders, combined through a shared fixed-size representation, can achieve competitive performance in speech-to-text translation. In this work, we show that this type of approach can be further improved with multilingual training. We observe significant improvements in zero-shot cross-modal speech translation, even outperforming a supervised approach based on XLSR for several languages.

This paper proposes a novel controllable human motion synthesis method for fine-level deformation based on static point-based radiance fields. Although previous editable neural radiance field methods can generate impressive results on novel-view synthesis and allow naive deformation, few algorithms can achieve complex 3D human editing such as forward kinematics. Our method exploits the explicit point cloud to train the static 3D scene and apply the deformation by encoding the point cloud translation using a deformation MLP. To make sure the rendering result is consistent with the canonical space training, we estimate the local rotation using SVD and interpolate the per-point rotation to the query view direction of the pre-trained radiance field. Extensive experiments show that our approach can significantly outperform the state-of-the-art on fine-level complex deformation which can be generalized to other 3D characters besides humans.

In order to understand the in-context learning phenomenon, recent works have adopted a stylized experimental framework and demonstrated that Transformers can learn gradient-based learning algorithms for various classes of real-valued functions. However, the limitations of Transformers in implementing learning algorithms, and their ability to learn other forms of algorithms are not well understood. Additionally, the degree to which these capabilities are confined to attention-based models is unclear. Furthermore, it remains to be seen whether the insights derived from these stylized settings can be extrapolated to pretrained Large Language Models (LLMs). In this work, we take a step towards answering these questions by demonstrating the following: (a) On a test-bed with a variety of Boolean function classes, we find that Transformers can nearly match the optimal learning algorithm for 'simpler' tasks, while their performance deteriorates on more 'complex' tasks. Additionally, we find that certain attention-free models perform (almost) identically to Transformers on a range of tasks. (b) When provided a teaching sequence, i.e. a set of examples that uniquely identifies a function in a class, we show that Transformers learn more sample-efficiently. Interestingly, our results show that Transformers can learn to implement two distinct algorithms to solve a single task, and can adaptively select the more sample-efficient algorithm depending on the sequence of in-context examples. (c) Lastly, we show that extant LLMs, e.g. LLaMA-2, GPT-4, can compete with nearest-neighbor baselines on prediction tasks that are guaranteed to not be in their training set.

The paper proposes a new approach to minimize the number of relays while maximizing the lifetime of underwater acoustic sensor networks (UASNs). This involves formulating the relay node placement (RNP) problem as a multi-objective optimization problem and employing the multi-objective lexico-graphic method (MOLM) to solve it. To achieve the optimal solution, the MOLM consists of two steps. First, the problem of lifetime maximization is tackled to find RNP solutions. This transforms the RNP into a non-convex optimization problem which is then converted into a convex programming equivalent. The proposed method has the same computational complexity as previous relay-node adjustment (RA) and difference convex algorithm (DCA) methods. The second step introduces a novel relay node selection to reach the optimal number of relays. Simulation results demonstrate that it has superior network lifetime and efficiency compared to RA and DCA.

This paper presents a novel approach to address the challenges of understanding the prediction process and debugging prediction errors in Vision Transformers (ViT), which have demonstrated superior performance in various computer vision tasks such as image classification and object detection. While several visual explainability techniques, such as CAM, Grad-CAM, Score-CAM, and Recipro-CAM, have been extensively researched for Convolutional Neural Networks (CNNs), limited research has been conducted on ViT. Current state-of-the-art solutions for ViT rely on class agnostic Attention-Rollout and Relevance techniques. In this work, we propose a new gradient-free visual explanation method for ViT, called ViT-ReciproCAM, which does not require attention matrix and gradient information. ViT-ReciproCAM utilizes token masking and generated new layer outputs from the target layer's input to exploit the correlation between activated tokens and network predictions for target classes. Our proposed method outperforms the state-of-the-art Relevance method in the Average Drop-Coherence-Complexity (ADCC) metric by $4.58\%$ to $5.80\%$ and generates more localized saliency maps. Our experiments demonstrate the effectiveness of ViT-ReciproCAM and showcase its potential for understanding and debugging ViT models. Our proposed method provides an efficient and easy-to-implement alternative for generating visual explanations, without requiring attention and gradient information, which can be beneficial for various applications in the field of computer vision.

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we embark on a comprehensive exploration of adversarial machine learning models, shedding light on their intrinsic complexity and interpretability. Our investigation reveals intriguing links between machine learning model complexity and Einstein's theory of special relativity, through the concept of entanglement. More specific, we define entanglement computationally and demonstrate that distant feature samples can exhibit strong correlations, akin to entanglement in quantum realm. This revelation challenges conventional perspectives in describing the phenomenon of adversarial transferability observed in contemporary machine learning models. By drawing parallels with the relativistic effects of time dilation and length contraction during computation, we gain deeper insights into adversarial machine learning, paving the way for more robust and interpretable models in this rapidly evolving field.

Training unsupervised speech recognition systems presents challenges due to GAN-associated instability, misalignment between speech and text, and significant memory demands. To tackle these challenges, we introduce a novel ASR system, ESPUM. This system harnesses the power of lower-order N-skipgrams (up to N=3) combined with positional unigram statistics gathered from a small batch of samples. Evaluated on the TIMIT benchmark, our model showcases competitive performance in ASR and phoneme segmentation tasks. Access our publicly available code at //github.com/lwang114/GraphUnsupASR.

The paper presents a comprehensive performance evaluation of some heuristic search algorithms in the context of autonomous systems and robotics. The objective of the study is to evaluate and compare the performance of different search algorithms in different problem settings on the pathfinding domain. Experiments give us insight into the behavior of the evaluated heuristic search algorithms, over the variation of different parameters: domain size, obstacle density, and distance between the start and the goal states. Results are then used to design a selection algorithm that, on the basis of problem characteristics, suggests the best search algorithm to use.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司