This paper proposes a novel controllable human motion synthesis method for fine-level deformation based on static point-based radiance fields. Although previous editable neural radiance field methods can generate impressive results on novel-view synthesis and allow naive deformation, few algorithms can achieve complex 3D human editing such as forward kinematics. Our method exploits the explicit point cloud to train the static 3D scene and apply the deformation by encoding the point cloud translation using a deformation MLP. To make sure the rendering result is consistent with the canonical space training, we estimate the local rotation using SVD and interpolate the per-point rotation to the query view direction of the pre-trained radiance field. Extensive experiments show that our approach can significantly outperform the state-of-the-art on fine-level complex deformation which can be generalized to other 3D characters besides humans.
Simulating fluid dynamics is crucial for the design and development process, ranging from simple valves to complex turbomachinery. Accurately solving the underlying physical equations is computationally expensive. Therefore, learning-based solvers that model interactions on meshes have gained interest due to their promising speed-ups. However, it is unknown to what extent these models truly understand the underlying physical principles and can generalize rather than interpolate. Generalization is a key requirement for a general-purpose fluid simulator, which should adapt to different topologies, resolutions, or thermodynamic ranges. We propose SURF, a benchmark designed to test the $\textit{generalization}$ of learned graph-based fluid simulators. SURF comprises individual datasets and provides specific performance and generalization metrics for evaluating and comparing different models. We empirically demonstrate the applicability of SURF by thoroughly investigating the two state-of-the-art graph-based models, yielding new insights into their generalization.
Parameter estimation is an important sub-field in statistics and system identification. Various methods for parameter estimation have been proposed in the literature, among which the Two-Stage (TS) approach is particularly promising, due to its ease of implementation and reliable estimates. Among the different statistical frameworks used to derive TS estimators, the min-max framework is attractive due to its mild dependence on prior knowledge about the parameters to be estimated. However, the existing implementation of the minimax TS approach has currently limited applicability, due to its heavy computational load. In this paper, we overcome this difficulty by using a gradient boosting machine (GBM) in the second stage of TS approach. We call the resulting algorithm the Two-Stage Gradient Boosting Machine (TSGBM) estimator. Finally, we test our proposed TSGBM estimator on several numerical examples including models of dynamical systems.
Recently, pretraining methods for the Graph Neural Networks (GNNs) have been successful at learning effective representations from unlabeled graph data. However, most of these methods rely on pairwise relations in the graph and do not capture the underling higher-order relations between entities. Hypergraphs are versatile and expressive structures that can effectively model higher-order relationships among entities in the data. Despite the efforts to adapt GNNs to hypergraphs (HyperGNN), there are currently no fully self-supervised pretraining methods for HyperGNN on heterogeneous hypergraphs. In this paper, we present SPHH, a novel self-supervised pretraining framework for heterogeneous HyperGNNs. Our method is able to effectively capture higher-order relations among entities in the data in a self-supervised manner. SPHH is consist of two self-supervised pretraining tasks that aim to simultaneously learn both local and global representations of the entities in the hypergraph by using informative representations derived from the hypergraph structure. Overall, our work presents a significant advancement in the field of self-supervised pretraining of HyperGNNs, and has the potential to improve the performance of various graph-based downstream tasks such as node classification and link prediction tasks which are mapped to hypergraph configuration. Our experiments on two real-world benchmarks using four different HyperGNN models show that our proposed SPHH framework consistently outperforms state-of-the-art baselines in various downstream tasks. The results demonstrate that SPHH is able to improve the performance of various HyperGNN models in various downstream tasks, regardless of their architecture or complexity, which highlights the robustness of our framework.
This study introduces a novel forecasting strategy that leverages the power of fractional differencing (FD) to capture both short- and long-term dependencies in time series data. Unlike traditional integer differencing methods, FD preserves memory in series while stabilizing it for modeling purposes. By applying FD to financial data from the SPY index and incorporating sentiment analysis from news reports, this empirical analysis explores the effectiveness of FD in conjunction with binary classification of target variables. Supervised classification algorithms were employed to validate the performance of FD series. The results demonstrate the superiority of FD over integer differencing, as confirmed by Receiver Operating Characteristic/Area Under the Curve (ROCAUC) and Mathews Correlation Coefficient (MCC) evaluations.
Neural radiance fields achieve unprecedented quality for novel view synthesis, but their volumetric formulation remains expensive, requiring a huge number of samples to render high-resolution images. Volumetric encodings are essential to represent fuzzy geometry such as foliage and hair, and they are well-suited for stochastic optimization. Yet, many scenes ultimately consist largely of solid surfaces which can be accurately rendered by a single sample per pixel. Based on this insight, we propose a neural radiance formulation that smoothly transitions between volumetric- and surface-based rendering, greatly accelerating rendering speed and even improving visual fidelity. Our method constructs an explicit mesh envelope which spatially bounds a neural volumetric representation. In solid regions, the envelope nearly converges to a surface and can often be rendered with a single sample. To this end, we generalize the NeuS formulation with a learned spatially-varying kernel size which encodes the spread of the density, fitting a wide kernel to volume-like regions and a tight kernel to surface-like regions. We then extract an explicit mesh of a narrow band around the surface, with width determined by the kernel size, and fine-tune the radiance field within this band. At inference time, we cast rays against the mesh and evaluate the radiance field only within the enclosed region, greatly reducing the number of samples required. Experiments show that our approach enables efficient rendering at very high fidelity. We also demonstrate that the extracted envelope enables downstream applications such as animation and simulation.
We give near-optimal algorithms for computing an ellipsoidal rounding of a convex polytope whose vertices are given in a stream. The approximation factor is linear in the dimension (as in John's theorem) and only loses an excess logarithmic factor in the aspect ratio of the polytope. Our algorithms are nearly optimal in two senses: first, their runtimes nearly match those of the most efficient known algorithms for the offline version of the problem. Second, their approximation factors nearly match a lower bound we show against a natural class of geometric streaming algorithms. In contrast to existing works in the streaming setting that compute ellipsoidal roundings only for centrally symmetric convex polytopes, our algorithms apply to general convex polytopes. We also show how to use our algorithms to construct coresets from a stream of points that approximately preserve both the ellipsoidal rounding and the convex hull of the original set of points.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.