亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In real-world conversations, the diversity and ambiguity of stickers often lead to varied interpretations based on the context, necessitating the requirement for comprehensively understanding stickers and supporting multi-tagging. To address this challenge, we introduce StickerTAG, the first multi-tag sticker dataset comprising a collected tag set with 461 tags and 13,571 sticker-tag pairs, designed to provide a deeper understanding of stickers. Recognizing multiple tags for stickers becomes particularly challenging due to sticker tags usually are fine-grained attribute aware. Hence, we propose an Attentive Attribute-oriented Prompt Learning method, ie, Att$^2$PL, to capture informative features of stickers in a fine-grained manner to better differentiate tags. Specifically, we first apply an Attribute-oriented Description Generation (ADG) module to obtain the description for stickers from four attributes. Then, a Local Re-attention (LoR) module is designed to perceive the importance of local information. Finally, we use prompt learning to guide the recognition process and adopt confidence penalty optimization to penalize the confident output distribution. Extensive experiments show that our method achieves encouraging results for all commonly used metrics.

相關內容

We present COmpetitive Mechanisms for Efficient Transfer (COMET), a modular world model which leverages reusable, independent mechanisms across different environments. COMET is trained on multiple environments with varying dynamics via a two-step process: competition and composition. This enables the model to recognise and learn transferable mechanisms. Specifically, in the competition phase, COMET is trained with a winner-takes-all gradient allocation, encouraging the emergence of independent mechanisms. These are then re-used in the composition phase, where COMET learns to re-compose learnt mechanisms in ways that capture the dynamics of intervened environments. In so doing, COMET explicitly reuses prior knowledge, enabling efficient and interpretable adaptation. We evaluate COMET on environments with image-based observations. In contrast to competitive baselines, we demonstrate that COMET captures recognisable mechanisms without supervision. Moreover, we show that COMET is able to adapt to new environments with varying numbers of objects with improved sample efficiency compared to more conventional finetuning approaches.

Anomaly detection in real-world scenarios poses challenges due to dynamic and often unknown anomaly distributions, requiring robust methods that operate under an open-world assumption. This challenge is exacerbated in practical settings, where models are employed by private organizations, precluding data sharing due to privacy and competitive concerns. Despite potential benefits, the sharing of anomaly information across organizations is restricted. This paper addresses the question of enhancing outlier detection within individual organizations without compromising data confidentiality. We propose a novel method leveraging representation learning and federated learning techniques to improve the detection of unknown anomalies. Specifically, our approach utilizes latent representations obtained from client-owned autoencoders to refine the decision boundary of inliers. Notably, only model parameters are shared between organizations, preserving data privacy. The efficacy of our proposed method is evaluated on two standard financial tabular datasets and an image dataset for anomaly detection in a distributed setting. The results demonstrate a strong improvement in the classification of unknown outliers during the inference phase for each organization's model.

The classical path planners, such as sampling-based path planners, can provide probabilistic completeness guarantees in the sense that the probability that the planner fails to return a solution if one exists, decays to zero as the number of samples approaches infinity. However, finding a near-optimal feasible solution in a given period is challenging in many applications such as the autonomous vehicle. To achieve an end-to-end near-optimal path planner, we first divide the path planning problem into two subproblems, which are path space segmentation and waypoints generation in the given path's space. We further propose a two-stage neural network named Path Planning Network (PPNet) each stage solves one of the subproblems abovementioned. Moreover, we propose a novel efficient data generation method for path planning named EDaGe-PP. EDaGe-PP can generate data with continuous-curvature paths with analytical expression while satisfying the clearance requirement. The results show the total computation time of generating random 2D path planning data is less than 1/33 and the success rate of PPNet trained by the dataset that is generated by EDaGe-PP is about 2 times compared to other methods. We validate PPNet against state-of-the-art path planning methods. The results show that PPNet can find a near-optimal solution in 15.3ms, which is much shorter than the state-of-the-art path planners.

Recently, significant progress has been made in text-based motion generation, enabling the generation of diverse and high-quality human motions that conform to textual descriptions. However, generating motions beyond the distribution of original datasets remains challenging, i.e., zero-shot generation. By adopting a divide-and-conquer strategy, we propose a new framework named Fine-Grained Human Motion Diffusion Model (FG-MDM) for zero-shot human motion generation. Specifically, we first parse previous vague textual annotations into fine-grained descriptions of different body parts by leveraging a large language model. We then use these fine-grained descriptions to guide a transformer-based diffusion model, which further adopts a design of part tokens. FG-MDM can generate human motions beyond the scope of original datasets owing to descriptions that are closer to motion essence. Our experimental results demonstrate the superiority of FG-MDM over previous methods in zero-shot settings. We will release our fine-grained textual annotations for HumanML3D and KIT.

In recent years, badminton analytics has drawn attention due to the advancement of artificial intelligence and the efficiency of data collection. While there is a line of effective applications to improve and investigate player performance, there are only a few public badminton datasets that can be used by researchers outside the badminton domain. Existing badminton singles datasets focus on specific matchups; however, they cannot provide comprehensive studies on different players and various matchups. In this paper, we provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022. ShuttleSet22 consists of 30,172 strokes in 2,888 rallies in the training set, 1,400 strokes in 450 rallies in the validation set, and 2,040 strokes in 654 rallies in the testing set, with detailed stroke-level metadata within a rally. To benchmark existing work with ShuttleSet22, we hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge @ IJCAI 2023, to encourage researchers to tackle this real-world problem through innovative approaches and to summarize insights between the state-of-the-art baseline and improved techniques, exchanging inspiring ideas. The baseline codes and the dataset are made available at //github.com/wywyWang/CoachAI-Projects/tree/main/CoachAI-Challenge-IJCAI2023.

Neural fields excel in computer vision and robotics due to their ability to understand the 3D visual world such as inferring semantics, geometry, and dynamics. Given the capabilities of neural fields in densely representing a 3D scene from 2D images, we ask the question: Can we scale their self-supervised pretraining, specifically using masked autoencoders, to generate effective 3D representations from posed RGB images. Owing to the astounding success of extending transformers to novel data modalities, we employ standard 3D Vision Transformers to suit the unique formulation of NeRFs. We leverage NeRF's volumetric grid as a dense input to the transformer, contrasting it with other 3D representations such as pointclouds where the information density can be uneven, and the representation is irregular. Due to the difficulty of applying masked autoencoders to an implicit representation, such as NeRF, we opt for extracting an explicit representation that canonicalizes scenes across domains by employing the camera trajectory for sampling. Our goal is made possible by masking random patches from NeRF's radiance and density grid and employing a standard 3D Swin Transformer to reconstruct the masked patches. In doing so, the model can learn the semantic and spatial structure of complete scenes. We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.6 million images. Once pretrained, the encoder is used for effective 3D transfer learning. Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks. Utilizing unlabeled posed 2D data for pretraining, NeRF-MAE significantly outperforms self-supervised 3D pretraining and NeRF scene understanding baselines on Front3D and ScanNet datasets with an absolute performance improvement of over 20% AP50 and 8% AP25 for 3D object detection.

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

北京阿比特科技有限公司