In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilibria, and the precompactness of forward trajectories. We show that the required structure of the chain recurrent set can be readily verified, and describe two important classes of systems with this property. We also show that the precompactness requirement can be verified by growth rate conditions on the interconnection term coupling the subsystems. Our results stand in contrast to prior works that require either global asymptotic stability of the subsystems (impossible for smooth systems evolving on general manifolds), time scale separation between the subsystems, or strong disturbance robustness properties of the outer loop. The approach has clear applications in stability certification of cascaded controllers for systems evolving on manifolds.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by Jeong et al.\ by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.
The study of leakage measures for privacy has been a subject of intensive research and is an important aspect of understanding how privacy leaks occur in computer systems. Differential privacy has been a focal point in the privacy community for some years and yet its leakage characteristics are not completely understood. In this paper we bring together two areas of research -- information theory and the g-leakage framework of quantitative information flow (QIF) -- to give an operational interpretation for the epsilon parameter of local differential privacy. We find that epsilon emerges as a capacity measure in both frameworks; via (log)-lift, a popular measure in information theory; and via max-case g-leakage, which we introduce to describe the leakage of any system to Bayesian adversaries modelled using ``worst-case'' assumptions under the QIF framework. Our characterisation resolves an important question of interpretability of epsilon and consolidates a number of disparate results covering the literature of both information theory and quantitative information flow.
This paper deals with inference in a class of stable but nearly-unstable processes. Autoregressive processes are considered, in which the bridge between stability and instability is expressed by a time-varying companion matrix $A_{n}$ with spectral radius $\rho(A_{n}) < 1$ satisfying $\rho(A_{n}) \rightarrow 1$. This framework is particularly suitable to understand unit root issues by focusing on the inner boundary of the unit circle. Consistency is established for the empirical covariance and the OLS estimation together with asymptotic normality under appropriate hypotheses when $A$, the limit of $A_n$, has a real spectrum, and a particular case is deduced when $A$ also contains complex eigenvalues. The asymptotic process is integrated with either one unit root (located at 1 or $-1$), or even two unit roots located at 1 and $-1$. Finally, a set of simulations illustrate the asymptotic behavior of the OLS. The results are essentially proved by $L^2$ computations and the limit theory of triangular arrays of martingales.
We consider the numerical approximation of a sharp-interface model for two-phase flow, which is given by the incompressible Navier-Stokes equations in the bulk domain together with the classical interface conditions on the interface. We propose structure-preserving finite element methods for the model, meaning in particular that volume preservation and energy decay are satisfied on the discrete level. For the evolving fluid interface, we employ parametric finite element approximations that introduce an implicit tangential velocity to improve the quality of the interface mesh. For the two-phase Navier-Stokes equations, we consider two different approaches: an unfitted and a fitted finite element method, respectively. In the unfitted approach, the constructed method is based on an Eulerian weak formulation, while in the fitted approach a novel arbitrary Lagrangian-Eulerian (ALE) weak formulation is introduced. Using suitable discretizations of these two formulations, we introduce two finite element methods and prove their structure-preserving properties. Numerical results are presented to show the accuracy and efficiency of the introduced methods.
The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.
In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the subsystems are only almost globally asymptotically stable. The result is extended to upper triangular systems of arbitrary size. In particular, if the unforced subsystems are almost globally asymptotically stable and their only chain recurrent points are hyperbolic equilibria, then the boundedness of forward trajectories is sufficient for the almost global asymptotic stability of the full upper triangular system. We show that unboundedness of such cascades is prohibited by growth rate conditions on the interconnection term and a Lyapunov function for the unforced outer subsystem, and the required structure for the chain recurrent set is enjoyed by classes of systems common in geometric control e.g. dissipative mechanical systems. Our results stand in contrast to prior works that require either time scale separation, prohibitively strong disturbance robustness properties, or global asymptotic stability in the subsystems.
We propose a method for estimation and inference for bounds for heterogeneous causal effect parameters in general sample selection models where the treatment can affect whether an outcome is observed and no exclusion restrictions are available. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effects. We use a flexible debiased/double machine learning approach that can accommodate non-linear functional forms and high-dimensional confounders. Easily verifiable high-level conditions for estimation, misspecification robust confidence intervals, and uniform confidence bands are provided as well. Re-analyzing data from a large scale field experiment on Facebook, we find significant depolarization effects of counter-attitudinal news subscription nudges. The effect bounds are highly heterogeneous and suggest strong depolarization effects for moderates, conservatives, and younger users.
Counterfactual explanations play an important role in detecting bias and improving the explainability of data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this work we derive an iterative method to calculate robust CEs, i.e. CEs that remain valid even after the features are slightly perturbed. To this end, our method provides a whole region of CEs allowing the user to choose a suitable recourse to obtain a desired outcome. We use algorithmic ideas from robust optimization and prove convergence results for the most common machine learning methods including logistic regression, decision trees, random forests, and neural networks. Our experiments show that our method can efficiently generate globally optimal robust CEs for a variety of common data sets and classification models.
We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.
We propose a new iteration scheme, the Cauchy-Simplex, to optimize convex problems over the probability simplex $\{w\in\mathbb{R}^n\ |\ \sum_i w_i=1\ \textrm{and}\ w_i\geq0\}$. Other works have taken steps to enforce positivity or unit normalization automatically but never simultaneously within a unified setting. This paper presents a natural framework for manifestly requiring the probability condition. Specifically, we map the simplex to the positive quadrant of a unit sphere, envisage gradient descent in latent variables, and map the result back in a way that only depends on the simplex variable. Moreover, proving rigorous convergence results in this formulation leads inherently to tools from information theory (e.g. cross entropy and KL divergence). Each iteration of the Cauchy-Simplex consists of simple operations, making it well-suited for high-dimensional problems. We prove that it has a convergence rate of ${O}(1/T)$ for convex functions, and numerical experiments of projection onto convex hulls show faster convergence than similar algorithms. Finally, we apply our algorithm to online learning problems and prove the convergence of the average regret for (1) Prediction with expert advice and (2) Universal Portfolios.