亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a new iteration scheme, the Cauchy-Simplex, to optimize convex problems over the probability simplex $\{w\in\mathbb{R}^n\ |\ \sum_i w_i=1\ \textrm{and}\ w_i\geq0\}$. Other works have taken steps to enforce positivity or unit normalization automatically but never simultaneously within a unified setting. This paper presents a natural framework for manifestly requiring the probability condition. Specifically, we map the simplex to the positive quadrant of a unit sphere, envisage gradient descent in latent variables, and map the result back in a way that only depends on the simplex variable. Moreover, proving rigorous convergence results in this formulation leads inherently to tools from information theory (e.g. cross entropy and KL divergence). Each iteration of the Cauchy-Simplex consists of simple operations, making it well-suited for high-dimensional problems. We prove that it has a convergence rate of ${O}(1/T)$ for convex functions, and numerical experiments of projection onto convex hulls show faster convergence than similar algorithms. Finally, we apply our algorithm to online learning problems and prove the convergence of the average regret for (1) Prediction with expert advice and (2) Universal Portfolios.

相關內容

In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.

Conductivity reconstruction in an inverse eddy current problem is considered in the present paper. With the electric field measurement on part of domain boundary, we formulate the reconstruction problem to a constrained optimization problem with total variation regularization. Existence and stability are proved for the solution to the optimization problem. The finite element method is employed to discretize the optimization problem. The gradient Lipschitz properties of the objective functional are established for the the discrete optimization problems. We propose the alternating direction method of multipliers to solve the discrete problem. Based on the the gradient Lipschitz property, we prove the convergence by extending the admissible set to the whole finite element space. Finally, we show some numerical experiments to illustrate the efficiency of the proposed methods.

Profile likelihoods are rarely used in geostatistical models due to the computational burden imposed by repeated decompositions of large variance matrices. Accounting for uncertainty in covariance parameters can be highly consequential in geostatistical models as some covariance parameters are poorly identified, the problem is severe enough that the differentiability parameter of the Matern correlation function is typically treated as fixed. The problem is compounded with anisotropic spatial models as there are two additional parameters to consider. In this paper, we make the following contributions: 1, A methodology is created for profile likelihoods for Gaussian spatial models with Mat\'ern family of correlation functions, including anisotropic models. This methodology adopts a novel reparametrization for generation of representative points, and uses GPUs for parallel profile likelihoods computation in software implementation. 2, We show the profile likelihood of the Mat\'ern shape parameter is often quite flat but still identifiable, it can usually rule out very small values. 3, Simulation studies and applications on real data examples show that profile-based confidence intervals of covariance parameters and regression parameters have superior coverage to the traditional standard Wald type confidence intervals.

We study the convergence behavior of the celebrated temporal-difference (TD) learning algorithm. By looking at the algorithm through the lens of optimization, we first argue that TD can be viewed as an iterative optimization algorithm where the function to be minimized changes per iteration. By carefully investigating the divergence displayed by TD on a classical counter example, we identify two forces that determine the convergent or divergent behavior of the algorithm. We next formalize our discovery in the linear TD setting with quadratic loss and prove that convergence of TD hinges on the interplay between these two forces. We extend this optimization perspective to prove convergence of TD in a much broader setting than just linear approximation and squared loss. Our results provide a theoretical explanation for the successful application of TD in reinforcement learning.

Overparameterized models may have many interpolating solutions; implicit regularization refers to the hidden preference of a particular optimization method towards a certain interpolating solution among the many. A by now established line of work has shown that (stochastic) gradient descent tends to have an implicit bias towards low rank and/or sparse solutions when used to train deep linear networks, explaining to some extent why overparameterized neural network models trained by gradient descent tend to have good generalization performance in practice. However, existing theory for square-loss objectives often requires very small initialization of the trainable weights, which is at odds with the larger scale at which weights are initialized in practice for faster convergence and better generalization performance. In this paper, we aim to close this gap by incorporating and analyzing gradient descent with weight normalization, where the weight vector is reparamterized in terms of polar coordinates, and gradient descent is applied to the polar coordinates. By analyzing key invariants of the gradient flow and using Lojasiewicz's Theorem, we show that weight normalization also has an implicit bias towards sparse solutions in the diagonal linear model, but that in contrast to plain gradient descent, weight normalization enables a robust bias that persists even if the weights are initialized at practically large scale. Experiments suggest that the gains in both convergence speed and robustness of the implicit bias are improved dramatically by using weight normalization in overparameterized diagonal linear network models.

Audio source separation is often achieved by estimating the magnitude spectrogram of each source, and then applying a phase recovery (or spectrogram inversion) algorithm to retrieve time-domain signals. Typically, spectrogram inversion is treated as an optimization problem involving one or several terms in order to promote estimates that comply with a consistency property, a mixing constraint, and/or a target magnitude objective. Nonetheless, it is still unclear which set of constraints and problem formulation is the most appropriate in practice. In this paper, we design a general framework for deriving spectrogram inversion algorithm, which is based on formulating optimization problems by combining these objectives either as soft penalties or hard constraints. We solve these by means of algorithms that perform alternating projections on the subsets corresponding to each objective/constraint. Our framework encompasses existing techniques from the literature as well as novel algorithms. We investigate the potential of these approaches for a speech enhancement task. In particular, one of our novel algorithms outperforms other approaches in a realistic setting where the magnitudes are estimated beforehand using a neural network.

Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.

The elastic net combines lasso and ridge regression to fuse the sparsity property of lasso with the grouping property of ridge regression. The connections between ridge regression and gradient descent and between lasso and forward stagewise regression have previously been shown. Similar to how the elastic net generalizes lasso and ridge regression, we introduce elastic gradient descent, a generalization of gradient descent and forward stagewise regression. We theoretically analyze elastic gradient descent and compare it to the elastic net and forward stagewise regression. Parts of the analysis are based on elastic gradient flow, a piecewise analytical construction, obtained for elastic gradient descent with infinitesimal step size. We also compare elastic gradient descent to the elastic net on real and simulated data and show that it provides similar solution paths, but is several orders of magnitude faster. Compared to forward stagewise regression, elastic gradient descent selects a model that, although still sparse, provides considerably lower prediction and estimation errors.

Singularly perturbed problems present inherent difficulty due to the presence of a thin boundary layer in its solution. To overcome this difficulty, we propose using deep operator networks (DeepONets), a method previously shown to be effective in approximating nonlinear operators between infinite-dimensional Banach spaces. In this paper, we demonstrate for the first time the application of DeepONets to one-dimensional singularly perturbed problems, achieving promising results that suggest their potential as a robust tool for solving this class of problems. We consider the convergence rate of the approximation error incurred by the operator networks in approximating the solution operator, and examine the generalization gap and empirical risk, all of which are shown to converge uniformly with respect to the perturbation parameter. By utilizing Shishkin mesh points as locations of the loss function, we conduct several numerical experiments that provide further support for the effectiveness of operator networks in capturing the singular boundary layer behavior.

Recently, Ye et al. (Mathematical Programming 2023) designed an algorithm for solving a specific class of bilevel programs with an emphasis on applications related to hyperparameter selection, utilizing the difference of convex algorithm based on the value function approach reformulation. The proposed algorithm is particularly powerful when the lower level problem is fully convex , such as a support vector machine model or a least absolute shrinkage and selection operator model. In this paper, to suit more applications related to machine learning and statistics, we substantially weaken the underlying assumption from lower level full convexity to weak convexity. Accordingly, we propose a new reformulation using Moreau envelope of the lower level problem and demonstrate that this reformulation is a difference of weakly convex program. Subsequently, we develop a sequentially convergent algorithm for solving this difference of weakly convex program. To evaluate the effectiveness of our approach, we conduct numerical experiments on the bilevel hyperparameter selection problem from elastic net, sparse group lasso, and RBF kernel support vector machine models.

北京阿比特科技有限公司