亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent works in contexts like the Internet of Things (IoT) and large-scale Cyber-Physical Systems (CPS) propose the idea of programming distributed systems by focussing on their global behaviour across space and time. In this view, a potentially vast and heterogeneous set of devices is considered as an "aggregate" to be programmed as a whole, while abstracting away the details of individual behaviour and exchange of messages, which are expressed declaratively. One such a paradigm, known as aggregate programming, builds on computational models inspired by field-based coordination. Existing models such as the field calculus capture interaction with neighbours by a so-called "neighbouring field" (a map from neighbours to values). This requires ad-hoc mechanisms to smoothly compose with standard values, thus complicating programming and introducing clutter in aggregate programs, libraries and domain-specific languages (DSLs). To address this key issue we introduce the novel notion of "computation against a neighbour", whereby the evaluation of certain subexpressions of the aggregate program are affected by recent corresponding evaluations in neighbours. We capture this notion in the neighbours calculus (NC), a new field calculus variant which is shown to smoothly support declarative specification of interaction with neighbours, and correspondingly facilitate the embedding of field computations as internal DSLs in common general-purpose programming languages -- as exemplified by a Scala implementation, called ScaFi. This paper formalises NC, thoroughly compares it with respect to the classic field calculus, and shows its expressiveness by means of a case study in edge computing, developed in ScaFi.

相關內容

Scala 是一門現代的多范式(shi)編程(cheng)語言,志(zhi)在(zai)以簡(jian)練、優雅及(ji)類型(xing)安全的方式(shi)來表達(da)常用編程(cheng)模式(shi)。它平(ping)滑(hua)地集成了面向對象和函數語言的特性。Scala 運行(xing)于Java 平(ping)臺(Java 虛擬(ni)機),并兼容現有(you)的 Java 程(cheng)序(xu)。

Multi-modal robots expand their operations from one working media to another, land to air for example. The majorities multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there is seldom research to date in the literature. In this paper, we proposed a triphibian robotic platform aiming at solving the challenges of different propulsion systems and immensely varied working media. In our design, three ducted fans are adopted to unify the propulsion system and provide the robot with driving forces to perform all-terrain operations. A morphable mechanism is designed to enable the transition between different motion modes, and specifically, a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed in detail. Finally, a triphibian robot prototype is fabricated and tested in various working media with mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions for future exploration tasks in different working scenarios.

We develop a fully non-parametric, easy-to-use, and powerful test for the missing completely at random (MCAR) assumption on the missingness mechanism of a dataset. The test compares distributions of different missing patterns on random projections in the variable space of the data. The distributional differences are measured with the Kullback-Leibler Divergence, using probability Random Forests. We thus refer to it as "Projected Kullback-Leibler MCAR" (PKLM) test. The use of random projections makes it applicable even if very few or no fully observed observations are available or if the number of dimensions is large. An efficient permutation approach guarantees the level for any finite sample size, resolving a major shortcoming of most other available tests. Moreover, the test can be used on both discrete and continuous data. We show empirically on a range of simulated data distributions and real datasets that our test has consistently high power and is able to avoid inflated type-I errors. Finally, we provide an R-package PKLMtest with an implementation of our test.

Mixed-Integer Linear Programming (MILP) plays an important role across a range of scientific disciplines and within areas of strategic importance to society. The MILP problems, however, suffer from combinatorial complexity. Because of integer decision variables, as the problem size increases, the number of possible solutions increases super-linearly thereby leading to a drastic increase in the computational effort. To efficiently solve MILP problems, a "price-based" decomposition and coordination approach is developed to exploit 1. the super-linear reduction of complexity upon the decomposition and 2. the geometric convergence potential inherent to Polyak's stepsizing formula for the fastest coordination possible to obtain near-optimal solutions in a computationally efficient manner. Unlike all previous methods to set stepsizes heuristically by adjusting hyperparameters, the key novel way to obtain stepsizes is purely decision-based: a novel "auxiliary" constraint satisfaction problem is solved, from which the appropriate stepsizes are inferred. Testing results for large-scale Generalized Assignment Problems (GAP) demonstrate that for the majority of instances, certifiably optimal solutions are obtained. For stochastic job-shop scheduling as well as for pharmaceutical scheduling, computational results demonstrate the two orders of magnitude speedup as compared to Branch-and-Cut (B&C). The new method has a major impact on the efficient resolution of complex Mixed-Integer Programming (MIP) problems arising within a variety of scientific fields.

Causal phenomena associated with rare events frequently occur across a wide range of engineering and mathematical problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links between random variables that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel algorithm that performs statistical independence tests on data collected from time-invariant dynamical systems in which rare but consequential events occur. We seek to understand if the state of the dynamical system causally affects the likelihood of the rare event. In particular, we exploit the time-invariance of the underlying data to superimpose the occurrences of rare events, thus creating a new dataset, with rare events are better represented, on which conditional independence tests can be more efficiently performed. We provide non-asymptotic bounds for the consistency of our algorithm, and validate the performance of our algorithm across various simulated scenarios, with applications to traffic accidents.

Reliable application of machine learning-based decision systems in the wild is one of the major challenges currently investigated by the field. A large portion of established approaches aims to detect erroneous predictions by means of assigning confidence scores. This confidence may be obtained by either quantifying the model's predictive uncertainty, learning explicit scoring functions, or assessing whether the input is in line with the training distribution. Curiously, while these approaches all state to address the same eventual goal of detecting failures of a classifier upon real-life application, they currently constitute largely separated research fields with individual evaluation protocols, which either exclude a substantial part of relevant methods or ignore large parts of relevant failure sources. In this work, we systematically reveal current pitfalls caused by these inconsistencies and derive requirements for a holistic and realistic evaluation of failure detection. To demonstrate the relevance of this unified perspective, we present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions w.r.t all relevant methods and failure sources. The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation in the abundance of publicized research on confidence scoring. Code and trained models are at //github.com/IML-DKFZ/fd-shifts.

Beyond achieving higher compression efficiency over classical image compression codecs, deep image compression is expected to be improved with additional side information, e.g., another image from a different perspective of the same scene. To better utilize the side information under the distributed compression scenario, the existing method (Ayzik and Avidan 2020) only implements patch matching at the image domain to solve the parallax problem caused by the difference in viewing points. However, the patch matching at the image domain is not robust to the variance of scale, shape, and illumination caused by the different viewing angles, and can not make full use of the rich texture information of the side information image. To resolve this issue, we propose Multi-Scale Feature Domain Patch Matching (MSFDPM) to fully utilizes side information at the decoder of the distributed image compression model. Specifically, MSFDPM consists of a side information feature extractor, a multi-scale feature domain patch matching module, and a multi-scale feature fusion network. Furthermore, we reuse inter-patch correlation from the shallow layer to accelerate the patch matching of the deep layer. Finally, we nd that our patch matching in a multi-scale feature domain further improves compression rate by about 20% compared with the patch matching method at image domain (Ayzik and Avidan 2020).

Classical functional linear regression models the relationship between a scalar response and a functional covariate, where the coefficient function is assumed to be identical for all subjects. In this paper, the classical model is extended to allow heterogeneous coefficient functions across different subgroups of subjects. The greatest challenge is that the subgroup structure is usually unknown to us. To this end, we develop a penalization-based approach which innovatively applies the penalized fusion technique to simultaneously determine the number and structure of subgroups and coefficient functions within each subgroup. An effective computational algorithm is derived. We also establish the oracle properties and estimation consistency. Extensive numerical simulations demonstrate its superiority compared to several competing methods. The analysis of an air quality dataset leads to interesting findings and improved predictions.

Distribution shift occurs when the test distribution differs from the training distribution, and it can considerably degrade performance of machine learning models deployed in the real world. Temporal shifts -- distribution shifts arising from the passage of time -- often occur gradually and have the additional structure of timestamp metadata. By leveraging timestamp metadata, models can potentially learn from trends in past distribution shifts and extrapolate into the future. While recent works have studied distribution shifts, temporal shifts remain underexplored. To address this gap, we curate Wild-Time, a benchmark of 5 datasets that reflect temporal distribution shifts arising in a variety of real-world applications, including patient prognosis and news classification. On these datasets, we systematically benchmark 13 prior approaches, including methods in domain generalization, continual learning, self-supervised learning, and ensemble learning. We use two evaluation strategies: evaluation with a fixed time split (Eval-Fix) and evaluation with a data stream (Eval-Stream). Eval-Fix, our primary evaluation strategy, aims to provide a simple evaluation protocol, while Eval-Stream is more realistic for certain real-world applications. Under both evaluation strategies, we observe an average performance drop of 20% from in-distribution to out-of-distribution data. Existing methods are unable to close this gap. Code is available at //wild-time.github.io/.

Simulation-based Bayesian inference (SBI) can be used to estimate the parameters of complex mechanistic models given observed model outputs without requiring access to explicit likelihood evaluations. A prime example for the application of SBI in neuroscience involves estimating the parameters governing the response dynamics of Hodgkin-Huxley (HH) models from electrophysiological measurements, by inferring a posterior over the parameters that is consistent with a set of observations. To this end, many SBI methods employ a set of summary statistics or scientifically interpretable features to estimate a surrogate likelihood or posterior. However, currently, there is no way to identify how much each summary statistic or feature contributes to reducing posterior uncertainty. To address this challenge, one could simply compare the posteriors with and without a given feature included in the inference process. However, for large or nested feature sets, this would necessitate repeatedly estimating the posterior, which is computationally expensive or even prohibitive. Here, we provide a more efficient approach based on the SBI method neural likelihood estimation (NLE): We show that one can marginalize the trained surrogate likelihood post-hoc before inferring the posterior to assess the contribution of a feature. We demonstrate the usefulness of our method by identifying the most important features for inferring parameters of an example HH neuron model. Beyond neuroscience, our method is generally applicable to SBI workflows that rely on data features for inference used in other scientific fields.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

北京阿比特科技有限公司