The well-known backward difference formulas (BDF) of the third, the fourth and the fifth orders are investigated for time integration of the phase field crystal model. By building up novel discrete gradient structures of the BDF-$\rmk$ ($\rmk=3,4,5$) formulas, we establish the energy dissipation laws at the discrete levels and then obtain the priori solution estimates for the associated numerical schemes (however, we can not build any discrete energy dissipation law for the corresponding BDF-6 scheme because the BDF-6 formula itself does not have any discrete gradient structures). With the help of the discrete orthogonal convolution kernels and Young-type convolution inequalities, some concise $L^2$ norm error estimates (with respect to the starting data in the $L^2$ norm) are established via the discrete energy technique. To the best of our knowledge, this is the first time such type $L^2$ norm error estimates of non-A-stable BDF schemes are obtained for nonlinear parabolic equations. Numerical examples are presented to verify and support the theoretical analysis.
We introduce a new overlapping Domain Decomposition Method (DDM) to solve the fully nonlinear Monge-Amp\`ere equation. While DDMs have been extensively studied for linear problems, their application to fully nonlinear partial differential equations (PDE) remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
We present a novel numerical method for solving the anisotropic diffusion equation in toroidally confined magnetic fields which is efficient, accurate and provably stable. The continuous problem is written in terms of a derivative operator for the perpendicular transport and a linear operator, obtained through field line tracing, for the parallel transport. We derive energy estimates of the solution of the continuous initial boundary value problem. A discrete formulation is presented using operator splitting in time with the summation by parts finite difference approximation of spatial derivatives for the perpendicular diffusion operator. Weak penalty procedures are derived for implementing both boundary conditions and parallel diffusion operator obtained by field line tracing. We prove that the fully-discrete approximation is unconditionally stable and asymptotic preserving. Discrete energy estimates are shown to match the continuous energy estimate given the correct choice of penalty parameters. Convergence tests are shown for the perpendicular operator by itself, and the ``NIMROD benchmark" problem is used as a manufactured solution to show the full scheme converges even in the case where the perpendicular diffusion is zero. Finally, we present a magnetic field with chaotic regions and islands and show the contours of the anisotropic diffusion equation reproduce key features in the field.
Nonlinear independent component analysis (ICA) aims to recover the underlying independent latent sources from their observable nonlinear mixtures. How to make the nonlinear ICA model identifiable up to certain trivial indeterminacies is a long-standing problem in unsupervised learning. Recent breakthroughs reformulate the standard independence assumption of sources as conditional independence given some auxiliary variables (e.g., class labels and/or domain/time indexes) as weak supervision or inductive bias. However, nonlinear ICA with unconditional priors cannot benefit from such developments. We explore an alternative path and consider only assumptions on the mixing process, such as Structural Sparsity. We show that under specific instantiations of such constraints, the independent latent sources can be identified from their nonlinear mixtures up to a permutation and a component-wise transformation, thus achieving nontrivial identifiability of nonlinear ICA without auxiliary variables. We provide estimation methods and validate the theoretical results experimentally. The results on image data suggest that our conditions may hold in a number of practical data generating processes.
A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition of several nonlinear functions, each with numerous parameters. The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient. As a result, the number of layers in the network does not significantly impact the complexity of the calculation. The objective of this paper is to express the gradient of the loss function in terms of a matrix multiplication using the Jacobian operator. This can be achieved by considering the total derivative of each layer with respect to its parameters and expressing it as a Jacobian matrix. The gradient can then be represented as the matrix product of these Jacobian matrices. This approach is valid because the chain rule can be applied to a composition of vector-valued functions, and the use of Jacobian matrices allows for the incorporation of multiple inputs and outputs. By providing concise mathematical justifications, the results can be made understandable and useful to a broad audience from various disciplines.
We consider the numerical approximation of a sharp-interface model for two-phase flow, which is given by the incompressible Navier-Stokes equations in the bulk domain together with the classical interface conditions on the interface. We propose structure-preserving finite element methods for the model, meaning in particular that volume preservation and energy decay are satisfied on the discrete level. For the evolving fluid interface, we employ parametric finite element approximations that introduce an implicit tangential velocity to improve the quality of the interface mesh. For the two-phase Navier-Stokes equations, we consider two different approaches: an unfitted and a fitted finite element method, respectively. In the unfitted approach, the constructed method is based on an Eulerian weak formulation, while in the fitted approach a novel arbitrary Lagrangian-Eulerian (ALE) weak formulation is introduced. Using suitable discretizations of these two formulations, we introduce two finite element methods and prove their structure-preserving properties. Numerical results are presented to show the accuracy and efficiency of the introduced methods.
In this paper we discuss potentially practical ways to produce expander graphs with good spectral properties and a compact description. We focus on several classes of uniform and bipartite expander graphs defined as random Schreier graphs of the general linear group over the finite field of size two. We perform numerical experiments and show that such constructions produce spectral expanders that can be useful for practical applications. To find a theoretical explanation of the observed experimental results, we used the method of moments to prove upper bounds for the expected second largest eigenvalue of the random Schreier graphs used in our constructions. We focus on bounds for which it is difficult to study the asymptotic behaviour but it is possible to compute non-trivial conclusions for relatively small graphs with parameters from our numerical experiments (e.g., with less than 2^200 vertices and degree at least logarithmic in the number of vertices).
In this paper, we discuss reduced order modelling approaches to bifurcating systems arising from continuum mechanics benchmarks. The investigation of the beam's deflection is a relevant topic of investigation with fundamental implications on their design for structural analysis and health. When the beams are exposed to external forces, their equilibrium state can undergo to a sudden variation. This happens when a compression, acting along the axial boundaries, exceeds a certain critical value. Linear elasticity models are not complex enough to capture the so-called beam's buckling, and nonlinear constitutive relations, as the hyperelastic laws, are required to investigate this behavior, whose mathematical counterpart is represented by bifurcating phenomena. The numerical analysis of the bifurcating modes and the post-buckling behavior, is usually unaffordable by means of standard high-fidelity techniques such (as the Finite Element method) and the efficiency of Reduced Order Models (ROMs), e.g.\ based on Proper Orthogonal Decomposition (POD), are necessary to obtain consistent speed-up in the reconstruction of the bifurcation diagram. The aim of this work is to provide insights regarding the application of POD-based ROMs for buckling phenomena occurring for 2-D and 3-D beams governed by different constitutive relations. The benchmarks will involve multi-parametric settings with geometrically parametrized domains, where the buckling's location depends on the material and geometrical properties induced by the parameter. Finally, we exploit the acquired notions from these toy problems, to simulate a real case scenario coming from the Norwegian petroleum industry.
Full waveform inversion (FWI) is an iterative identification process that serves to minimize the misfit of model-based simulated and experimentally measured wave field data, with the goal of identifying a field of parameters for a given physical object. The inverse optimization process of FWI is based on forward and backward solutions of the (elastic or acoustic) eave equation. In a previous paper [1], we explored opportunities of using the finite cell method (FCM) as the wave field solver to incorporate highly complex geometric models. Furthermore, we demonstrated that the identification of the model's density outperforms that of the velocity -- particularly in cases where unknown voids characterized by homogeneous Neumann boundary conditions need to be detected. The paper at hand extends this previous study: The isogeometric finite cell analysis (IGA-FCM) -- a combination of isogeometric analysis (IGA) and FCM -- is applied for the wave field solver, with the advantage that the polynomial degree and subsequently also the sampling frequency of the wave field can be increased quite easily. Since the inversion efficiency strongly depends on the accuracy of the forward and backward wave field solution and of the gradient of the functional, consistent and lumped mass matrix discretization are compared. The resolution of the grid describing the unknown material density is the decouple from the knot span grid. Finally, we propose an adaptive multi-resolution algorithm that refines the material grid only locally using an image processing-based refinement indicator. The developed inversion framework allows fast and memory-efficient wave simulation and object identification. While we study the general behavior of the proposed approach on 2D benchmark problems, a final 3D problem shows that it can also be used to identify voids in geometrically complex spatial structures.
We analyze numerical approximations for axisymmetric two-phase flow in the arbitrary Lagrangian-Eulerian (ALE) framework. We consider a parametric formulation for the evolving fluid interface in terms of a one-dimensional generating curve. For the two-phase Navier-Stokes equations, we introduce both conservative and nonconservative ALE weak formulations in the 2d meridian half-plane. Piecewise linear parametric elements are employed for discretizing the moving interface, which is then coupled to a moving finite element approximation of the bulk equations. This leads to a variety of ALE methods, which enjoy either an equidistribution property or unconditional stability. Furthermore, we adapt these introduced methods with the help of suitable time-weighted discrete normals, so that the volume of the two phases is exactly preserved on the discrete level. Numerical results for rising bubbles and oscillating droplets are presented to show the efficiency and accuracy of these introduced methods.