亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Risk scores are widely used for clinical decision making and commonly generated from logistic regression models. Machine-learning-based methods may work well for identifying important predictors, but such 'black box' variable selection limits interpretability, and variable importance evaluated from a single model can be biased. We propose a robust and interpretable variable selection approach using the recently developed Shapley variable importance cloud (ShapleyVIC) that accounts for variability across models. Our approach evaluates and visualizes overall variable contributions for in-depth inference and transparent variable selection, and filters out non-significant contributors to simplify model building steps. We derive an ensemble variable ranking from variable contributions, which is easily integrated with an automated and modularized risk score generator, AutoScore, for convenient implementation. In a study of early death or unplanned readmission, ShapleyVIC selected 6 of 41 candidate variables to create a well-performing model, which had similar performance to a 16-variable model from machine-learning-based ranking.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Machine Learning · 學成 · Better · 講稿 ·
2022 年 4 月 20 日

Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.

The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.

The number of information systems (IS) studies dealing with explainable artificial intelligence (XAI) is currently exploding as the field demands more transparency about the internal decision logic of machine learning (ML) models. However, most techniques subsumed under XAI provide post-hoc-analytical explanations, which have to be considered with caution as they only use approximations of the underlying ML model. Therefore, our paper investigates a series of intrinsically interpretable ML models and discusses their suitability for the IS community. More specifically, our focus is on advanced extensions of generalized additive models (GAM) in which predictors are modeled independently in a non-linear way to generate shape functions that can capture arbitrary patterns but remain fully interpretable. In our study, we evaluate the prediction qualities of five GAMs as compared to six traditional ML models and assess their visual outputs for model interpretability. On this basis, we investigate their merits and limitations and derive design implications for further improvements.

We investigate optimal execution problems with instantaneous price impact and stochastic resilience. First, in the setting of linear price impact function we derive a closed-form recursion for the optimal strategy, generalizing previous results with deterministic transient price impact. Second, we develop a numerical algorithm for the case of nonlinear price impact. We utilize an actor-critic framework that constructs two neural-network surrogates for the value function and the feedback control. One advantage of such functional approximators is the ability to do parametric learning, i.e. to incorporate some of the model parameters as part of the input space. Precise calibration of price impact, resilience, etc., is known to be extremely challenging and hence it is critical to understand sensitivity of the strategy to these parameters. Our parametric neural network (NN) learner organically scales across 3-6 input dimensions and is shown to accurately approximate optimal strategy across a range of parameter configurations. We provide a fully reproducible Jupyter Notebook with our NN implementation, which is of independent pedagogical interest, demonstrating the ease of use of NN surrogates in (parametric) stochastic control problems.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

Recently, numerous studies have demonstrated the presence of bias in machine learning powered decision-making systems. Although most definitions of algorithmic bias have solid mathematical foundations, the corresponding bias detection techniques often lack statistical rigor, especially for non-iid data. We fill this gap in the literature by presenting a rigorous non-parametric testing procedure for bias according to Predictive Rate Parity, a commonly considered notion of algorithmic bias. We adapt traditional asymptotic results for non-parametric estimators to test for bias in the presence of dependence commonly seen in user-level data generated by technology industry applications and illustrate how these approaches can be leveraged for mitigation. We further propose modifications of this methodology to address bias measured through marginal outcome disparities in classification settings and extend notions of predictive rate parity to multi-objective models. Experimental results on real data show the efficacy of the proposed detection and mitigation methods.

Lifelong on-device learning is a key challenge for machine intelligence, and this requires learning from few, often single, samples. Memory augmented neural network has been proposed to achieve the goal, but the memory module has to be stored in an off-chip memory due to its size. Therefore the practical use has been heavily limited. Previous works on emerging memory-based implementation have difficulties in scaling up because different modules with various structures are difficult to integrate on the same chip and the small sense margin of the content addressable memory for the memory module heavily limited the degree of mismatch calculation. In this work, we implement the entire memory augmented neural network architecture in a fully integrated memristive crossbar platform and achieve an accuracy that closely matches standard software on digital hardware for the Omniglot dataset. The successful demonstration is supported by implementing new functions in crossbars in addition to widely reported matrix multiplications. For example, the locality-sensitive hashing operation is implemented in crossbar arrays by exploiting the intrinsic stochasticity of memristor devices. Besides, the content-addressable memory module is realized in crossbars, which also supports the degree of mismatches. Simulations based on experimentally validated models show such an implementation can be efficiently scaled up for one-shot learning on the Mini-ImageNet dataset. The successful demonstration paves the way for practical on-device lifelong learning and opens possibilities for novel attention-based algorithms not possible in conventional hardware.

Blockchain and smart contract technology are novel approaches to data and code management that facilitate trusted computing by allowing for development in a distributed and decentralized manner. Testing smart contracts comes with its own set of challenges which have not yet been fully identified and explored. Although existing tools can identify and discover known vulnerabilities and their interactions on the Ethereum blockchain through random search or symbolic execution, these tools generally do not produce test suites suitable for human oracles. In this paper, we present AGSOLT (Automated Generator of Solidity Test Suites). We demonstrate its efficiency by implementing two search algorithms to automatically generate test suites for stand-alone Solidity smart contracts, taking into account some of the blockchain-specific challenges. To test AGSOLT, we compared a random search algorithm and a genetic algorithm on a set of 36 real-world smart contracts. We found that AGSOLT is capable of achieving high branch coverage with both approaches and even discovered some errors in some of the most popular Solidity smart contracts on Github.

The Model Order Reduction (MOR) technique can provide compact numerical models for fast simulation. Different from the intrusive MOR methods, the non-intrusive MOR does not require access to the Full Order Models (FOMs), especially system matrices. Since the non-intrusive MOR methods strongly rely on the snapshots of the FOMs, constructing good snapshot sets becomes crucial. In this work, we propose a new active learning approach with two novelties. A novel idea with our approach is the use of single-time step snapshots from the system states taken from an estimation of the reduced-state space. These states are selected using a greedy strategy supported by an error estimator based Gaussian Process Regression (GPR). Additionally, we introduce a use case-independent validation strategy based on Probably Approximately Correct (PAC) learning. In this work, we use Artificial Neural Networks (ANNs) to identify the Reduced Order Model (ROM), however the method could be similarly applied to other ROM identification methods. The performance of the whole workflow is tested by a 2-D thermal conduction and a 3-D vacuum furnace model. With little required user interaction and a training strategy independent to a specific use case, the proposed method offers a huge potential for industrial usage to create so-called executable Digital Twins (DTs).

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司