亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Model Order Reduction (MOR) technique can provide compact numerical models for fast simulation. Different from the intrusive MOR methods, the non-intrusive MOR does not require access to the Full Order Models (FOMs), especially system matrices. Since the non-intrusive MOR methods strongly rely on the snapshots of the FOMs, constructing good snapshot sets becomes crucial. In this work, we propose a new active learning approach with two novelties. A novel idea with our approach is the use of single-time step snapshots from the system states taken from an estimation of the reduced-state space. These states are selected using a greedy strategy supported by an error estimator based Gaussian Process Regression (GPR). Additionally, we introduce a use case-independent validation strategy based on Probably Approximately Correct (PAC) learning. In this work, we use Artificial Neural Networks (ANNs) to identify the Reduced Order Model (ROM), however the method could be similarly applied to other ROM identification methods. The performance of the whole workflow is tested by a 2-D thermal conduction and a 3-D vacuum furnace model. With little required user interaction and a training strategy independent to a specific use case, the proposed method offers a huge potential for industrial usage to create so-called executable Digital Twins (DTs).

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Metal · 可辨認的 · Markov · 模型評估 ·
2022 年 6 月 9 日

Fiber metal laminates (FML) are composite structures consisting of metals and fiber reinforced plastics (FRP) which have experienced an increasing interest as the choice of materials in aerospace and automobile industries. Due to a sophisticated built up of the material, not only the design and production of such structures is challenging but also its damage detection. This research work focuses on damage identification in FML with guided ultrasonic waves (GUW) through an inverse approach based on the Bayesian paradigm. As the Bayesian inference approach involves multiple queries of the underlying system, a parameterized reduced-order model (ROM) is used to closely approximate the solution with considerably less computational cost. The signals measured by the embedded sensors and the ROM forecasts are employed for the localization and characterization of damage in FML. In this paper, a Markov Chain Monte-Carlo (MCMC) based Metropolis-Hastings (MH) algorithm and an Ensemble Kalman filtering (EnKF) technique are deployed to identify the damage. Numerical tests illustrate the approaches and the results are compared in regard to accuracy and efficiency. It is found that both methods are successful in multivariate characterization of the damage with a high accuracy and were also able to quantify their associated uncertainties. The EnKF distinguishes itself with the MCMC-MH algorithm in the matter of computational efficiency. In this application of identifying the damage, the EnKF is approximately thrice faster than the MCMC-MH.

The free-form deformation model can represent a wide range of non-rigid deformations by manipulating a control point lattice over the image. However, due to a large number of parameters, it is challenging to fit the free-form deformation model directly to the deformed image for deformation estimation because of the complexity of the fitness landscape. In this paper, we cast the registration task as a multi-objective optimization problem (MOP) according to the fact that regions affected by each control point overlap with each other. Specifically, by partitioning the template image into several regions and measuring the similarity of each region independently, multiple objectives are built and deformation estimation can thus be realized by solving the MOP with off-the-shelf multi-objective evolutionary algorithms (MOEAs). In addition, a coarse-to-fine strategy is realized by image pyramid combined with control point mesh subdivision. Specifically, the optimized candidate solutions of the current image level are inherited by the next level, which increases the ability to deal with large deformation. Also, a post-processing procedure is proposed to generate a single output utilizing the Pareto optimal solutions. Comparative experiments on both synthetic and real-world images show the effectiveness and usefulness of our deformation estimation method.

We present a new optimization-based structure-preserving model order reduction (MOR) method for port-Hamiltonian descriptor systems (pH-DAEs) with differentiation index two. Our method is based on a novel parameterization that allows us to represent any linear time-invariant pH-DAE with a minimal number of parameters, which makes it well-suited to model reduction. We propose two algorithms which directly optimize the parameters of a reduced model to approximate a given large-scale model with respect to either the H-infinity or the H-2 norm. This approach has several benefits. Our parameterization ensures that the reduced model is again a pH-DAE system and enables a compact representation of the algebraic part of the large-scale model, which in projection-based methods often requires a more involved treatment. The direct optimization is entirely based on transfer function evaluations of the large-scale model and is therefore independent of the system matrices' structure. Numerical experiments are conducted to illustrate the high accuracy and small reduced model orders in comparison to other structure-preserving MOR methods.

The performance of Emergency Departments (EDs) is of great importance for any health care system, as they serve as the entry point for many patients. However, among other factors, the variability of patient acuity levels and corresponding treatment requirements of patients visiting EDs imposes significant challenges on decision makers. Balancing waiting times of patients to be first seen by a physician with the overall length of stay over all acuity levels is crucial to maintain an acceptable level of operational performance for all patients. To address those requirements when assigning idle resources to patients, several methods have been proposed in the past, including the Accumulated Priority Queuing (APQ) method. The APQ method linearly assigns priority scores to patients with respect to their time in the system and acuity level. Hence, selection decisions are based on a simple system representation that is used as an input for a selection function. This paper investigates the potential of an Machine Learning (ML) based patient selection method. It assumes that for a large set of training data, including a multitude of different system states, (near) optimal assignments can be computed by a (heuristic) optimizer, with respect to a chosen performance metric, and aims to imitate such optimal behavior when applied to new situations. Thereby, it incorporates a comprehensive state representation of the system and a complex non-linear selection function. The motivation for the proposed approach is that high quality selection decisions may depend on a variety of factors describing the current state of the ED, not limited to waiting times, which can be captured and utilized by the ML model. Results show that the proposed method significantly outperforms the APQ method for a majority of evaluated settings

Personalised federated learning (FL) aims at collaboratively learning a machine learning model taylored for each client. Albeit promising advances have been made in this direction, most of existing approaches works do not allow for uncertainty quantification which is crucial in many applications. In addition, personalisation in the cross-device setting still involves important issues, especially for new clients or those having small number of observations. This paper aims at filling these gaps. To this end, we propose a novel methodology coined FedPop by recasting personalised FL into the population modeling paradigm where clients' models involve fixed common population parameters and random effects, aiming at explaining data heterogeneity. To derive convergence guarantees for our scheme, we introduce a new class of federated stochastic optimisation algorithms which relies on Markov chain Monte Carlo methods. Compared to existing personalised FL methods, the proposed methodology has important benefits: it is robust to client drift, practical for inference on new clients, and above all, enables uncertainty quantification under mild computational and memory overheads. We provide non-asymptotic convergence guarantees for the proposed algorithms and illustrate their performances on various personalised federated learning tasks.

Recently soft robotics has rapidly become a novel and promising area of research with many designs and applications due to their flexible and compliant structure. However, it is more difficult to derive the nonlinear dynamic model of such soft robots. The differential kinematics and dynamics of the soft manipulator can be formulated as a set of highly nonlinear partial differential equations (PDEs) via the classic Cosserat rod theory. In this work, we propose a discrete modeling technique named piecewise linear strain (PLS) to solve the PDEs of Cosserat-based models, based on which the associated analytic models are deduced. To validate the accuracy of the proposed Cosserat model, the static model of the conical cantilever rod under gravity as a simple example is simulated by using different discretization methods. Results indicate that PLS Cosserat model is comparable to the mechanical deformation behavior of real-world soft manipulator. Finally, a parameters identification scheme for this model is established, and the simulation as well as experimental validation demonstrate that using this method can identify the model physical parameters with high accuracy.

We introduce SubGD, a novel few-shot learning method which is based on the recent finding that stochastic gradient descent updates tend to live in a low-dimensional parameter subspace. In experimental and theoretical analyses, we show that models confined to a suitable predefined subspace generalize well for few-shot learning. A suitable subspace fulfills three criteria across the given tasks: it (a) allows to reduce the training error by gradient flow, (b) leads to models that generalize well, and (c) can be identified by stochastic gradient descent. SubGD identifies these subspaces from an eigendecomposition of the auto-correlation matrix of update directions across different tasks. Demonstrably, we can identify low-dimensional suitable subspaces for few-shot learning of dynamical systems, which have varying properties described by one or few parameters of the analytical system description. Such systems are ubiquitous among real-world applications in science and engineering. We experimentally corroborate the advantages of SubGD on three distinct dynamical systems problem settings, significantly outperforming popular few-shot learning methods both in terms of sample efficiency and performance.

While annotating decent amounts of data to satisfy sophisticated learning models can be cost-prohibitive for many real-world applications. Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem. Some recent studies explored the potential of combining AL and SSL to better probe the unlabeled data. However, almost all these contemporary SSL-AL works use a simple combination strategy, ignoring SSL and AL's inherent relation. Further, other methods suffer from high computational costs when dealing with large-scale, high-dimensional datasets. Motivated by the industry practice of labeling data, we propose an innovative Inconsistency-based virtual aDvErsarial Active Learning (IDEAL) algorithm to further investigate SSL-AL's potential superiority and achieve mutual enhancement of AL and SSL, i.e., SSL propagates label information to unlabeled samples and provides smoothed embeddings for AL, while AL excludes samples with inconsistent predictions and considerable uncertainty for SSL. We estimate unlabeled samples' inconsistency by augmentation strategies of different granularities, including fine-grained continuous perturbation exploration and coarse-grained data transformations. Extensive experiments, in both text and image domains, validate the effectiveness of the proposed algorithm, comparing it against state-of-the-art baselines. Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.

In this paper, we focus our attention on private Empirical Risk Minimization (ERM), which is one of the most commonly used data analysis method. We take the first step towards solving the above problem by theoretically exploring the effect of epsilon (the parameter of differential privacy that determines the strength of privacy guarantee) on utility of the learning model. We trace the change of utility with modification of epsilon and reveal an established relationship between epsilon and utility. We then formalize this relationship and propose a practical approach for estimating the utility under an arbitrary value of epsilon. Both theoretical analysis and experimental results demonstrate high estimation accuracy and broad applicability of our approach in practical applications. As providing algorithms with strong utility guarantees that also give privacy when possible becomes more and more accepted, our approach would have high practical value and may be likely to be adopted by companies and organizations that would like to preserve privacy but are unwilling to compromise on utility.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

北京阿比特科技有限公司