This paper introduces Flamingo, a system for secure aggregation of data across a large set of clients. In secure aggregation, a server sums up the private inputs of clients and obtains the result without learning anything about the individual inputs beyond what is implied by the final sum. Flamingo focuses on the multi-round setting found in federated learning in which many consecutive summations (averages) of model weights are performed to derive a good model. Previous protocols, such as Bell et al. (CCS '20), have been designed for a single round and are adapted to the federated learning setting by repeating the protocol multiple times. Flamingo eliminates the need for the per-round setup of previous protocols, and has a new lightweight dropout resilience protocol to ensure that if clients leave in the middle of a sum the server can still obtain a meaningful result. Furthermore, Flamingo introduces a new way to locally choose the so-called client neighborhood introduced by Bell et al. These techniques help Flamingo reduce the number of interactions between clients and the server, resulting in a significant reduction in the end-to-end runtime for a full training session over prior work. We implement and evaluate Flamingo and show that it can securely train a neural network on the (Extended) MNIST and CIFAR-100 datasets, and the model converges without a loss in accuracy, compared to a non-private federated learning system.
Recent work demonstrates that, after being fine-tuned on a high-quality instruction dataset, the resulting model can obtain impressive capabilities to address a wide range of tasks. However, existing methods for instruction data generation often produce duplicate data and are not controllable enough on data quality. In this paper, we extend the generalization of instruction tuning by classifying the instruction data to 4 code-related tasks and propose a LLM-based Generator-Discriminator data process framework to generate diverse, high-quality instruction data from open source code. Hence, we introduce CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal code-related tasks,which is aimed at augmenting the effectiveness of instruction tuning and improving the generalization ability of fine-tuned model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with Widespread And Versatile Enhanced instruction tuning. This model is specifically designed for enhancing instruction tuning of Code Language Models (LLMs). Our experiments demonstrate that Wavecoder models outperform other open-source models in terms of generalization ability across different code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder exhibits high efficiency in previous code generation tasks. This paper thus offers a significant contribution to the field of instruction data generation and fine-tuning models, providing new insights and tools for enhancing performance in code-related tasks.
This paper proposes an end-to-end framework for generating 3D human pose datasets using Neural Radiance Fields (NeRF). Public datasets generally have limited diversity in terms of human poses and camera viewpoints, largely due to the resource-intensive nature of collecting 3D human pose data. As a result, pose estimators trained on public datasets significantly underperform when applied to unseen out-of-distribution samples. Previous works proposed augmenting public datasets by generating 2D-3D pose pairs or rendering a large amount of random data. Such approaches either overlook image rendering or result in suboptimal datasets for pre-trained models. Here we propose PoseGen, which learns to generate a dataset (human 3D poses and images) with a feedback loss from a given pre-trained pose estimator. In contrast to prior art, our generated data is optimized to improve the robustness of the pre-trained model. The objective of PoseGen is to learn a distribution of data that maximizes the prediction error of a given pre-trained model. As the learned data distribution contains OOD samples of the pre-trained model, sampling data from such a distribution for further fine-tuning a pre-trained model improves the generalizability of the model. This is the first work that proposes NeRFs for 3D human data generation. NeRFs are data-driven and do not require 3D scans of humans. Therefore, using NeRF for data generation is a new direction for convenient user-specific data generation. Our extensive experiments show that the proposed PoseGen improves two baseline models (SPIN and HybrIK) on four datasets with an average 6% relative improvement.
A key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL). However, constructing a standalone RL policy that maps perception to action directly encounters severe problems, chief among them being its lack of generality across multiple tasks and the need for a large amount of training data. The leading cause is that it cannot effectively integrate prior information into the perception-action cycle when devising the policy. Large language models (LLMs) emerged as a fundamental way to incorporate cross-domain knowledge into AI agents but lack crucial learning and adaptation toward specific decision problems. This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies. Our methodology is motivated by the modularity found in the human brain. The framework utilises the construction of intrinsic and extrinsic functions to add previous understandings of reasoning structures. It also provides the adaptive ability to learn models inside every module or function, consistent with the modular structure of cognitive processes. We describe the framework in-depth and compare it with other AI pipelines and existing frameworks. The paper explores practical applications, covering experiments that show the effectiveness of our method. Our results indicate that AI agents perform and adapt far better when organised reasoning and prior knowledge are embedded. This opens the door to more resilient and general AI agent systems.
This paper addresses the need for automatic and efficient generation of host driver code for arbitrary custom AXI-based accelerators targeting linear algebra algorithms, an important workload in various applications, including machine learning and scientific computing. While existing tools have focused on automating accelerator prototyping, little attention has been paid to the host-accelerator interaction. This paper introduces AXI4MLIR, an extension of the MLIR compiler framework designed to facilitate the automated generation of host-accelerator driver code. With new MLIR attributes and transformations, AXI4MLIR empowers users to specify accelerator features (including their instructions) and communication patterns and exploit the host memory hierarchy. We demonstrate AXI4MLIR's versatility across different types of accelerators and problems, showcasing significant CPU cache reference reductions (up to 56%) and up to a 1.65x speedup compared to manually optimized driver code implementations. AXI4MLIR implementation is open-source and available at: //github.com/AXI4MLIR/axi4mlir.
We introduce Dataset Grouper, a library to create large-scale group-structured (e.g., federated) datasets, enabling federated learning simulation at the scale of foundation models. This library facilitates the creation of group-structured versions of existing datasets based on user-specified partitions and directly leads to a variety of useful heterogeneous datasets that can be plugged into existing software frameworks. Dataset Grouper offers three key advantages. First, it scales to settings where even a single group's dataset is too large to fit in memory. Second, it provides flexibility, both in choosing the base (non-partitioned) dataset and in defining partitions. Finally, it is framework-agnostic. We empirically demonstrate that Dataset Grouper enables large-scale federated language modeling simulations on datasets that are orders of magnitude larger than in previous work, allowing for federated training of language models with hundreds of millions, and even billions, of parameters. Our experimental results show that algorithms like FedAvg operate more as meta-learning methods than as empirical risk minimization methods at this scale, suggesting their utility in downstream personalization and task-specific adaptation. Dataset Grouper is available at //github.com/google-research/dataset_grouper.
This work proposes a neural network to extensively exploit spatial information for multichannel joint speech separation, denoising and dereverberation, named SpatialNet. In the short-time Fourier transform (STFT) domain, the proposed network performs end-to-end speech enhancement. It is mainly composed of interleaved narrow-band and cross-band blocks to respectively exploit narrow-band and cross-band spatial information. The narrow-band blocks process frequencies independently, and use self-attention mechanism and temporal convolutional layers to respectively perform spatial-feature-based speaker clustering and temporal smoothing/filtering. The cross-band blocks process frames independently, and use full-band linear layer and frequency convolutional layers to respectively learn the correlation between all frequencies and adjacent frequencies. Experiments are conducted on various simulated and real datasets, and the results show that 1) the proposed network achieves the state-of-the-art performance on almost all tasks; 2) the proposed network suffers little from the spectral generalization problem; and 3) the proposed network is indeed performing speaker clustering (demonstrated by attention maps).
This paper presents a detailed case study examining the application of Large Language Models (LLMs) in the construction of test cases within the context of software engineering. LLMs, characterized by their advanced natural language processing capabilities, are increasingly garnering attention as tools to automate and enhance various aspects of the software development life cycle. Leveraging a case study methodology, we systematically explore the integration of LLMs in the test case construction process, aiming to shed light on their practical efficacy, challenges encountered, and implications for software quality assurance. The study encompasses the selection of a representative software application, the formulation of test case construction methodologies employing LLMs, and the subsequent evaluation of outcomes. Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency. Additionally, delves into challenges such as model interpretability and adaptation to diverse software contexts. The findings from this case study contributes with nuanced insights into the practical utility of LLMs in the domain of test case construction, elucidating their potential benefits and limitations. By addressing real-world scenarios and complexities, this research aims to inform software practitioners and researchers alike about the tangible implications of incorporating LLMs into the software testing landscape, fostering a more comprehensive understanding of their role in optimizing the software development process.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.