We propose an exact algorithm for the Graph Burning Problem ($\texttt{GBP}$), an NP-hard optimization problem that models the spread of influence on social networks. Given a graph $G$ with vertex set $V$, the objective is to find a sequence of $k$ vertices in $V$, namely, $v_1, v_2, \dots, v_k$, such that $k$ is minimum and $\bigcup_{i = 1}^{k} \{u\! \in\! V\! : d(u, v_i) \leq k - i\} = V$, where $d(u,v)$ denotes the distance between $u$ and $v$. We formulate the problem as a set covering integer programming model and design a row generation algorithm for the $\texttt{GBP}$. Our method exploits the fact that a very small number of covering constraints is often sufficient for solving the integer model, allowing the corresponding rows to be generated on demand. To date, the most efficient exact algorithm for the $\texttt{GBP}$, denoted here by $\texttt{GDCA}$, is able to obtain optimal solutions for graphs with up to 14,000 vertices within two hours of execution. In comparison, our algorithm finds provably optimal solutions approximately 236 times faster, on average, than $\texttt{GDCA}$. For larger graphs, memory space becomes a limiting factor for $\texttt{GDCA}$. Our algorithm, however, solves real-world instances with almost 200,000 vertices in less than 35 seconds, increasing the size of graphs for which optimal solutions are known by a factor of 14.
We study the problem of assigning items to agents so as to maximize the \emph{weighted} Nash Social Welfare (NSW) under submodular valuations. The best-known result for the problem is an $O(nw_{\max})$-approximation due to Garg, Husic, Li, Vega, and Vondrak~\cite{GHL23}, where $w_{\max}$ is the maximum weight over all agents. Obtaining a constant approximation algorithm is an open problem in the field that has recently attracted considerable attention. We give the first such algorithm for the problem, thus solving the open problem in the affirmative. Our algorithm is based on the natural Configuration LP for the problem, which was introduced recently by Feng and Li~\cite{FL24} for the additive valuation case. Our rounding algorithm is similar to that of Li \cite{Li25} developed for the unrelated machine scheduling problem to minimize weighted completion time. Roughly speaking, we designate the largest item in each configuration as a large item and the remaining items as small items. So, every agent gets precisely 1 fractional large item in the configuration LP solution. With the rounding algorithm in \cite{Li25}, we can ensure that in the obtained solution, every agent gets precisely 1 large item, and the assignments of small items are negatively correlated.
In this paper, we study the quantum channel on a von Neuamnn algebras $\mathcal{M}$ preserving a von Neumann subalgebra $\mathcal{N}$, namely $\mathcal{N}$-$\mathcal{N}$-bimodule unital completely positive map. By introducing the relative irreducibility of a bimodule quantum channel, we show that its eigenvalues with modulus 1 form a finite cyclic group, called its phase group. Moreover, the corresponding eigenspaces are invertible $\mathcal{N}$-$\mathcal{N}$-bimodules, which encode a categorification of the phase group. When $\mathcal{N}\subset \mathcal{M}$ is a finite-index irreducible subfactor of type II$_1$, we prove that any bimodule quantum channel is relative irreducible for the intermediate subfactor of its fixed points. In addition, we can reformulate and prove these results intrinsically in subfactor planar algebras without referring to the subfactor using the methods of quantum Fourier analysis.
We formulate and analyze interior penalty discontinuous Galerkin methods for coupled elliptic PDEs modeling excitable tissue, represented by intracellular and extracellular domains sharing a common interface. The PDEs are coupled through a dynamic boundary condition, posed on the interface, that relates the normal gradients of the solutions to the time derivative of their jump. This system is referred to as the Extracellular Membrane Intracellular model or the cell-by-cell model. Due to the dynamic nature of the interface condition and to the presence of corner singularities, the analysis of discontinuous Galerkin methods is non-standard. We prove the existence and uniqueness of solutions by a reformulation of the problem to one posed on the membrane. Convergence is shown by utilizing face-to-element lifting operators and notions of weak consistency suitable for solutions with low spatial regularity. Further, we present parameter-robust preconditioned iterative solvers. Numerical examples in idealized geometries demonstrate our theoretical findings, and simulations in multiple cells portray the robustness of the method.
We study a fundamental problem in Computational Geometry, the planar two-center problem. In this problem, the input is a set $S$ of $n$ points in the plane and the goal is to find two smallest congruent disks whose union contains all points of $S$. A longstanding open problem has been to obtain an $O(n\log n)$-time algorithm for planar two-center, matching the $\Omega(n\log n)$ lower bound given by Eppstein [SODA'97]. Towards this, researchers have made a lot of efforts over decades. The previous best algorithm, given by Wang [SoCG'20], solves the problem in $O(n\log^2 n)$ time. In this paper, we present an $O(n\log n)$-time (deterministic) algorithm for planar two-center, which completely resolves this open problem.
Artificial Intelligence (AI) research often aims to develop models that generalize reliably across complex datasets, yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel approach leveraging three generative models of varying complexity to synthesize one of the most demanding structured datasets: Malicious Network Traffic. Our approach transforms numerical data into text, reframing data generation as a language modeling task, which enhances data regularization and significantly improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights into its role across various domains. Our code and pre-trained models are openly accessible at //github.com/Moe-Zbeeb/Exploring-the-landscape-for-generative-models-for-specialized-data-generation, enabling further exploration and application of our methodology. Index Terms: Data synthesis, machine learning, traffic generation, privacy-preserving data, generative models.
All machine learning algorithms use a loss, cost, utility or reward function to encode the learning objective and oversee the learning process. This function that supervises learning is a frequently unrecognized hyperparameter that determines how incorrect outputs are penalized and can be tuned to improve performance. This paper shows that training speed and final accuracy of neural networks can significantly depend on the loss function used to train neural networks. In particular derivative values can be significantly different with different loss functions leading to significantly different performance after gradient descent based Backpropagation (BP) training. This paper explores the effect on performance of using new loss functions that are also convex but penalize errors differently compared to the popular Cross-entropy loss. Two new classification loss functions that significantly improve performance on a wide variety of benchmark tasks are proposed. A new loss function call smooth absolute error that outperforms the Squared error, Huber and Log-Cosh losses on datasets with significantly many outliers is proposed. This smooth absolute error loss function is infinitely differentiable and more closely approximates the absolute error loss compared to the Huber and Log-Cosh losses used for robust regression.
A seminal palette sparsification result of Assadi, Chen, and Khanna states that in every $n$-vertex graph of maximum degree $\Delta$, sampling $\Theta(\log n)$ colors per vertex from $\{1, \ldots, \Delta+1\}$ almost certainly allows for a proper coloring from the sampled colors. Alon and Assadi extended this work proving a similar result for $O\left(\Delta/\log \Delta\right)$-coloring triangle-free graphs. Apart from being interesting results from a combinatorial standpoint, their results have various applications to the design of graph coloring algorithms in different models of computation. In this work, we focus on locally sparse graphs, i.e., graphs with sparse neighborhoods. We say a graph $G = (V, E)$ is $k$-locally-sparse if for each vertex $v \in V$, the subgraph $G[N(v)]$ contains at most $k$ edges. A celebrated result of Alon, Krivelevich, and Sudakov shows that such graphs are $O(\Delta/\log (\Delta/\sqrt{k}))$-colorable. For any $\alpha \in (0, 1)$ and $k \ll \Delta^{2\alpha}$, let $G$ be a $k$-locally-sparse graph. For $q = \Theta\left(\Delta/\log \left(\Delta^\alpha/\sqrt{k}\right)\right)$, we show that sampling $O\left(\Delta^\alpha + \sqrt{\log n}\right)$ colors per vertex is sufficient to obtain a proper $q$-coloring of $G$ from the sampled colors. Setting $k = 1$ recovers the aforementioned result of Alon and Assadi for triangle-free graphs. A key element in our proof is a proposition regarding correspondence coloring in the so-called color-degree setting, which improves upon recent work of Anderson, Kuchukova, and the author and is of independent interest.
We propose the convex floating body membership problem, which consists of efficiently determining when a query point $a\in\mathbb{R}^d$ belongs to the so-called $\varepsilon$-convex floating body of a given bounded convex domain $K\subset\mathbb{R}^d$. We consider this problem in an approximate setting, i.e., given a parameter $\delta>0$, the query can be answered either way if the Hilbert distance in $K$ of $a$ from the boundary of a relatively-scaled $\varepsilon$-convex floating body is less than $\delta$. We present a data structure for this problem that has storage size $O(\delta^{-d}\varepsilon^{-(d-1)/2})$ and achieves query time of $O({\delta^{-1}}\ln 1/\varepsilon)$. Our construction is motivated by a recent work of Abdelkader and Mount on APM queries, and relies on a comparison of convex floating bodies with balls in the Hilbert metric on $K$.
We describe a mesh-free three-dimensional (3D) numerical scheme for solving the incompressible semi-geostrophic equations, based on semi-discrete optimal transport techniques. These results generalise previous two-dimensional (2D) implementations. The optimal transport methods we adopt are known for their structural preservation and energy conservation qualities and achieve an excellent level of efficiency and numerical energy-conservation. We use this scheme to generate numerical simulations of an important benchmark problem. To our knowledge, this is the first fully 3D simulation of this particular cyclone, evidencing the model's applicability to atmospheric and oceanic phenomena and offering a novel, robust tool for meteorological and oceanographic modelling.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.