亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal inference in observational studies can be challenging when confounders are subject to missingness. Generally, the identification of causal effects is not guaranteed even under restrictive parametric model assumptions when confounders are missing not at random. To address this, We propose a general framework to establish the identification of causal effects when confounders are subject to treatment-independent missingness, which means that the missing data mechanism is independent of the treatment, given the outcome and possibly missing confounders. We give special consideration to commonly-used models for continuous and binary outcomes and provide counterexamples when identification fails. For estimation, we provide a weighted estimation equation estimating method for model parameters and purpose three estimators for the average causal effect based on the estimated models. We evaluate the finite-sample performance of the estimators via simulations. We further illustrate the proposed method with real data sets from the National Health and Nutrition Examination Survey.

相關內容

In this paper, we propose a new class of local differential privacy (LDP) schemes based on combinatorial block designs for a discrete distribution estimation. This class not only recovers many known LDP schemes in a unified framework of combinatorial block design, but also suggests a novel way of finding new schemes achieving the optimal (or near-optimal) privacy-utility trade-off with lower communication costs. Indeed, we find many new LDP schemes that achieve both the optimal privacy-utility trade-off and the minimum communication cost among all the unbiased schemes for a certain set of input data size and LDP constraint. Furthermore, to partially solve the sparse existence issue of block design schemes, we consider a broader class of LDP schemes based on regular and pairwise-balanced designs, called RPBD schemes, which relax one of the symmetry requirements on block designs. By considering this broader class of RPBD schemes, we can find LDP schemes achieving near-optimal privacy-utility trade-off with reasonably low communication costs for a much larger set of input data size and LDP constraint.

We study causal inference under case-control and case-population sampling. Specifically, we focus on the binary-outcome and binary-treatment case, where the parameters of interest are causal relative and attributable risks defined via the potential outcome framework. It is shown that strong ignorability is not always as powerful as it is under random sampling and that certain monotonicity assumptions yield comparable results in terms of sharp identified intervals. Specifically, the usual odds ratio is shown to be a sharp identified upper bound on causal relative risk under the monotone treatment response and monotone treatment selection assumptions. We offer algorithms for inference on the causal parameters that are aggregated over the true population distribution of the covariates. We show the usefulness of our approach by studying three empirical examples: the benefit of attending private school for entering a prestigious university in Pakistan; the relationship between staying in school and getting involved with drug-trafficking gangs in Brazil; and the link between physicians' hours and size of the group practice in the United States.

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.

Rates of missing data often depend on record-keeping policies and thus may change across times and locations, even when the underlying features are comparatively stable. In this paper, we introduce the problem of Domain Adaptation under Missingness Shift (DAMS). Here, (labeled) source data and (unlabeled) target data would be exchangeable but for different missing data mechanisms. We show that if missing data indicators are available, DAMS reduces to covariate shift. Addressing cases where such indicators are absent, we establish the following theoretical results for underreporting completely at random: (i) covariate shift is violated (adaptation is required); (ii) the optimal linear source predictor can perform arbitrarily worse on the target domain than always predicting the mean; (iii) the optimal target predictor can be identified, even when the missingness rates themselves are not; and (iv) for linear models, a simple analytic adjustment yields consistent estimates of the optimal target parameters. In experiments on synthetic and semi-synthetic data, we demonstrate the promise of our methods when assumptions hold. Finally, we discuss a rich family of future extensions.

This study considers a panel data analysis to examine the heterogeneity in treatment effects with respect to a pre-treatment covariate of interest in the staggered difference-in-differences setting in Callaway and Sant'Anna (2021). Under a set of standard identification conditions, a doubly robust estimand conditional on the covariate identifies the group-time conditional average treatment effect given the covariate. Given this identification result, we propose a three-step estimation procedure based on nonparametric local linear regressions and parametric estimation methods, and develop a doubly robust inference method to construct a uniform confidence band of the group-time conditional average treatment effect function.

The Differentiable Search Index (DSI) is a novel information retrieval (IR) framework that utilizes a differentiable function to generate a sorted list of document identifiers in response to a given query. However, due to the black-box nature of the end-to-end neural architecture, it remains to be understood to what extent DSI possesses the basic indexing and retrieval abilities. To mitigate this gap, in this study, we define and examine three important abilities that a functioning IR framework should possess, namely, exclusivity, completeness, and relevance ordering. Our analytical experimentation shows that while DSI demonstrates proficiency in memorizing the unidirectional mapping from pseudo queries to document identifiers, it falls short in distinguishing relevant documents from random ones, thereby negatively impacting its retrieval effectiveness. To address this issue, we propose a multi-task distillation approach to enhance the retrieval quality without altering the structure of the model and successfully endow it with improved indexing abilities. Through experiments conducted on various datasets, we demonstrate that our proposed method outperforms previous DSI baselines.

Probabilistic graphical models provide a powerful tool to describe complex statistical structure, with many real-world applications in science and engineering from controlling robotic arms to understanding neuronal computations. A major challenge for these graphical models is that inferences such as marginalization are intractable for general graphs. These inferences are often approximated by a distributed message-passing algorithm such as Belief Propagation, which does not always perform well on graphs with cycles, nor can it always be easily specified for complex continuous probability distributions. Such difficulties arise frequently in expressive graphical models that include intractable higher-order interactions. In this paper we define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions. Experimental results on several families of graphical models demonstrate the out-of-distribution generalization capability of our method to different sized graphs, and indicate the domain in which our method outperforms Belief Propagation (BP). Moreover, we test the RF-GNN on a real-world Low-Density Parity-Check dataset as a benchmark along with other baseline models including BP variants and other GNN methods. Overall we find that RF-GNNs outperform other methods under high noise levels.

Proportional rate models are among the most popular methods for analyzing the rate function of counting processes. Although providing a straightforward rate-ratio interpretation of covariate effects, the proportional rate assumption implies that covariates do not modify the shape of the rate function. When such an assumption does not hold, we propose describing the relationship between the rate function and covariates through two indices: the shape index and the size index. The shape index allows the covariates to flexibly affect the shape of the rate function, and the size index retains the interpretability of covariate effects on the magnitude of the rate function. To overcome the challenges in simultaneously estimating the two sets of parameters, we propose a conditional pseudolikelihood approach to eliminate the size parameters in shape estimation and an event count projection approach for size estimation. The proposed estimators are asymptotically normal with a root-$n$ convergence rate. Simulation studies and an analysis of recurrent hospitalizations using SEER-Medicare data are conducted to illustrate the proposed methods.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司