In this paper, we investigate a scenario in which a robot learns a low-dimensional representation of a door given a video of the door opening or closing. This representation can be used to infer door-related parameters and predict the outcomes of interacting with the door. Current machine learning based approaches in the doors domain are based primarily on labelled datasets. However, the large quantity of available door data suggests the feasibility of a semisupervised approach based on pretraining. To exploit the hierarchical structure of the dataset where each door has multiple associated images, we pretrain with a structured latent variable model known as a neural statistician. The neural satsitician enforces separation between shared context-level variables (common across all images associated with the same door) and instance-level variables (unique to each individual image). We first demonstrate that the neural statistician is able to learn an embedding that enables reconstruction and sampling of realistic door images. Then, we evaluate the correspondence of the learned embeddings to human-interpretable parameters in a series of supervised inference tasks. It was found that a pretrained neural statistician encoder outperformed analogous context-free baselines when predicting door handedness, size, angle location, and configuration from door images. Finally, in a visual bandit door-opening task with a variety of door configuration, we found that neural statistician embeddings achieve lower regret than context-free baselines.
A retention strategy based on an enlightened lapse model is a powerful profitabilitylever for a life insurer. Some machine learning models are excellent at predicting lapse,but from the insurer's perspective, predicting which policyholder is likely to lapse is notenough to design a retention strategy. In our paper, we define a lapse managementframework with an appropriate validation metric based on Customer Lifetime Value andprofitability. We include the risk of death in the study through competing risks considerations inparametric and tree-based models and show that further individualization of theexisting approaches leads to increased performance. We show that survival tree-basedmodels outperform parametric approaches and that the actuarial literature cansignificantly benefit from them. Then, we compare, on real data, how this frameworkleads to increased predicted gains for a life insurer and discuss the benefits of ourmodel in terms of commercial and strategic decision-making.
Online polarization research currently focuses on studying single-issue opinion distributions or computing distance metrics of interaction network structures. Limited data availability often restricts studies to positive interaction data, which can misrepresent the reality of a discussion. We introduce a novel framework that aims at combining these three aspects, content and interactions, as well as their nature (positive or negative), while challenging the prevailing notion of polarization as an umbrella term for all forms of online conflict or opposing opinions. In our approach, built on the concepts of cleavage structures and structural balance of signed social networks, we factorize polarization into two distinct metrics: Antagonism and Alignment. Antagonism quantifies hostility in online discussions, based on the reactions of users to content. Alignment uses signed structural information encoded in long-term user-user relations on the platform to describe how well user interactions fit the global and/or traditional sides of discussion. We can analyse the change of these metrics through time, localizing both relevant trends but also sudden changes that can be mapped to specific contexts or events. We apply our methods to two distinct platforms: Birdwatch, a US crowd-based fact-checking extension of Twitter, and DerStandard, an Austrian online newspaper with discussion forums. In these two use cases, we find that our framework is capable of describing the global status of the groups of users (identification of cleavages) while also providing relevant findings on specific issues or in specific time frames. Furthermore, we show that our four metrics describe distinct phenomena, emphasizing their independent consideration for unpacking polarization complexities.
It is common to use networks to encode the architecture of interactions between entities in complex systems in the physical, biological, social, and information sciences. To study the large-scale behavior of complex systems, it is useful to examine mesoscale structures in networks as building blocks that influence such behavior. We present a new approach for describing low-rank mesoscale structures in networks, and we illustrate our approach using several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks. We find that these networks possess a relatively small number of `latent motifs' that together can successfully approximate most subgraphs of a network at a fixed mesoscale. We use an algorithm for `network dictionary learning' (NDL), which combines a network-sampling method and nonnegative matrix factorization, to learn the latent motifs of a given network. The ability to encode a network using a set of latent motifs has a wide variety of applications to network-analysis tasks, such as comparison, denoising, and edge inference. Additionally, using a new network denoising and reconstruction (NDR) algorithm, we demonstrate how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted network.
The ability to detect and analyze failed executions automatically is crucial for an explainable and robust robotic system. Recently, Large Language Models (LLMs) have demonstrated strong reasoning abilities on textual inputs. To leverage the power of LLM for robot failure explanation, we introduce a framework REFLECT, which queries LLM to identify and explain robot failures given a hierarchical summary of robot past experiences generated from multi-sensory data. Conditioned on the explanation, a task planner will generate an executable plan for the robot to correct the failure and complete the task. To systematically evaluate the framework, we create the RoboFail dataset with a variety of tasks and failure scenarios. We demonstrate that the LLM-based framework is able to generate informative failure explanations that assist successful correction planning. Videos and code available at: //roboreflect.github.io/.
Change point detection is a commonly used technique in time series analysis, capturing the dynamic nature in which many real-world processes function. With the ever increasing troves of multivariate high-dimensional time series data, especially in neuroimaging and finance, there is a clear need for scalable and data-driven change point detection methods. Currently, change point detection methods for multivariate high-dimensional data are scarce, with even less available in high-level, easily accessible software packages. To this end, we introduce the R package fabisearch, available on the Comprehensive R Archive Network (CRAN), which implements the factorized binary search (FaBiSearch) methodology. FaBiSearch is a novel statistical method for detecting change points in the network structure of multivariate high-dimensional time series which employs non-negative matrix factorization (NMF), an unsupervised dimension reduction and clustering technique. Given the high computational cost of NMF, we implement the method in C++ code and use parallelization to reduce computation time. Further, we also utilize a new binary search algorithm to efficiently identify multiple change points and provide a new method for network estimation for data between change points. We show the functionality of the package and the practicality of the method by applying it to a neuroimaging and a finance data set. Lastly, we provide an interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership (if applicable). The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space.
The recent success of large foundation models in artificial intelligence has prompted the emergence of chemical pre-trained models. Despite the growing interest in large molecular pre-trained models that provide informative representations for downstream tasks, attempts for multimodal pre-training approaches on the molecule domain were limited. To address this, we present a novel multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties, drawing inspiration from recent advances in multimodal learning techniques. Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space, which enables the model to regard bidirectional information between the molecules' structure and properties. These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model. Through extensive experiments, we demonstrate that our model shows remarkable capabilities in solving various meaningful chemical challenges, including conditional molecule generation, property prediction, molecule classification, and reaction prediction.
Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.