In this work, we propose an UAV-aided Integrated Access and Backhaul (IAB) system design offering 5G connectivity to ground users. UAV is integrated with a distributed unit (DU) acting as an aerial DU, which can provide 5G wireless backhaul access to a terrestrial central unit (CU). The CU-DU interface fully complies with the 3GPP defined F1 application protocol (F1AP). Such aerial DU can be instantiated and configured dynamically, tailoring to the network demands. The complete radio and access network solution is based on open-source software from OpenAirInterface (OAI) and off-the-shelf commercial 5G mobile terminals. Experimental results illustrate throughput gains and coverage extension brought by the aerial DU.
In this work we introduce a manifold learning-based surrogate modeling framework for uncertainty quantification in high-dimensional stochastic systems. Our first goal is to perform data mining on the available simulation data to identify a set of low-dimensional (latent) descriptors that efficiently parameterize the response of the high-dimensional computational model. To this end, we employ Principal Geodesic Analysis on the Grassmann manifold of the response to identify a set of disjoint principal geodesic submanifolds, of possibly different dimension, that captures the variation in the data. Since operations on the Grassmann require the data to be concentrated, we propose an adaptive algorithm based on Riemanniann K-means and the minimization of the sample Frechet variance on the Grassmann manifold to identify "local" principal geodesic submanifolds that represent different system behavior across the parameter space. Polynomial chaos expansion is then used to construct a mapping between the random input parameters and the projection of the response on these local principal geodesic submanifolds. The method is demonstrated on four test cases, a toy-example that involves points on a hypersphere, a Lotka-Volterra dynamical system, a continuous-flow stirred-tank chemical reactor system, and a two-dimensional Rayleigh-Benard convection problem
This work aims at making a comprehensive contribution in the general area of parametric inference for discretely observed diffusion processes. Established approaches for likelihood-based estimation invoke a time-discretisation scheme for the approximation of the intractable transition dynamics of the Stochastic Differential Equation (SDE) model over finite time periods. The scheme is applied for a step-size that is either user-selected or determined by the data. Recent research has highlighted the critical ef-fect of the choice of numerical scheme on the behaviour of derived parameter estimates in the setting of hypo-elliptic SDEs. In brief, in our work, first, we develop two weak second order sampling schemes (to cover both hypo-elliptic and elliptic SDEs) and produce a small time expansion for the density of the schemes to form a proxy for the true intractable SDE transition density. Then, we establish a collection of analytic results for likelihood-based parameter estimates obtained via the formed proxies, thus providing a theoretical framework that showcases advantages from the use of the developed methodology for SDE calibration. We present numerical results from carrying out classical or Bayesian inference, for both elliptic and hypo-elliptic SDEs.
The IoT's vulnerability to network attacks has motivated the design of intrusion detection schemes (IDS) using Machine Learning (ML), with a low computational cost for online detection but intensive offline learning. Such IDS can have high attack detection accuracy and are easily installed on servers that communicate with IoT devices. However, they are seldom evaluated in realistic operational conditions where IDS processing may be held up by the system overload created by attacks. Thus we first present an experimental study of UDP Flood Attacks on a Local Area Network Test-Bed, where the first line of defence is an accurate IDS using an Auto-Associative Dense Random Neural Network. The experiments reveal that during severe attacks, the packet and protocol management software overloads the multi-core server, and paralyses IDS detection. We therefore propose and experimentally evaluate an IDS design where decisions are made from a very small number of incoming packets, so that attacking traffic is dropped within milli-seconds after an attack begins and the paralysing effect of congestion is avoided.
Reconfigurable intelligent surfaces, with their large number of antennas, offer an interesting opportunity for high spatial-resolution imaging. In this paper, we propose a novel RIS-aided integrated imaging and communication system that can reduce the RIS beam training overhead for communication by leveraging the imaging of the surrounding environment. In particular, using the RIS as a wireless imaging device, our system constructs the scene depth map of the environment, including the mobile user. Then, we develop a user detection algorithm that subtracts the background and extracts the mobile user attributes from the depth map. These attributes are then utilized to design the RIS interaction vector and the beam selection strategy with low overhead. Simulation results show that the proposed approach can achieve comparable beamforming gain to the optimal/exhaustive beam selection solution while requiring 1000 times less beam training overhead.
In this paper, we propose a deep generative time series approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories. We aim to find meaningful temporal latent representations of an underlying generative process that explain the observed disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical concepts. By combining the generative approach with medical knowledge, we leverage the ability to discover novel aspects of the disease while integrating medical concepts into the model. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering the disease into new sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series including uncertainty quantification. We demonstrate the effectiveness of our approach in modeling systemic sclerosis, showcasing the potential of our machine learning model to capture complex disease trajectories and acquire new medical knowledge.
This work proposes a receding horizon coverage control approach which allows multiple autonomous aerial agents to work cooperatively in order cover the total surface area of a 3D object of interest. The cooperative coverage problem which is posed in this work as an optimal control problem, jointly optimizes the agents' kinematic and camera control inputs, while considering coupling constraints amongst the team of agents which aim at minimizing the duplication of work. To generate look-ahead coverage trajectories over a finite planning horizon, the proposed approach integrates visibility constraints into the proposed coverage controller in order to determine the visible part of the object with respect to the agents' future states. In particular, we show how non-linear and non-convex visibility determination constraints can be transformed into logical constraints which can easily be embedded into a mixed integer optimization program.
Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.
Motivated by problems arising in digital advertising, we introduce the task of training differentially private (DP) machine learning models with semi-sensitive features. In this setting, a subset of the features is known to the attacker (and thus need not be protected) while the remaining features as well as the label are unknown to the attacker and should be protected by the DP guarantee. This task interpolates between training the model with full DP (where the label and all features should be protected) or with label DP (where all the features are considered known, and only the label should be protected). We present a new algorithm for training DP models with semi-sensitive features. Through an empirical evaluation on real ads datasets, we demonstrate that our algorithm surpasses in utility the baselines of (i) DP stochastic gradient descent (DP-SGD) run on all features (known and unknown), and (ii) a label DP algorithm run only on the known features (while discarding the unknown ones).
In randomized controlled trials (RCT) with time-to-event outcomes, intercurrent events occur as semi-competing/competing events, and they could affect the hazard of outcomes or render outcomes ill-defined. Although five strategies have been proposed in ICH E9 (R1) addendum to address intercurrent events in RCT, they did not readily extend to the context of time-to-event data for studying causal effects with rigorously stated implications. In this study, we show how to define, estimate, and infer the time-dependent cumulative incidence of outcome events in such contexts for obtaining causal interpretations. Specifically, we derive the mathematical forms of the scientific objective (i.e., causal estimands) under the five strategies and clarify the required data structure to identify these causal estimands. Furthermore, we summarize estimation and inference methods for these causal estimands by adopting methodologies in survival analysis, including analytic formulas for asymptotic analysis and hypothesis testing. We illustrate our methods with the LEADER Trial on investigating the effect of liraglutide on cardiovascular outcomes. Studies of multiple endpoints and combining strategies to address multiple intercurrent events can help practitioners understand treatment effects more comprehensively.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.