亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove strong rate resp. weak rate ${\mathcal O}(\tau)$ for a structure preserving temporal discretization (with $\tau$ the step size) of the stochastic Allen-Cahn equation with additive resp. multiplicative colored noise in $d=1,2,3$ dimensions. Direct variational arguments exploit the one-sided Lipschitz property of the cubic nonlinearity in the first setting to settle first order strong rate. It is the same property which allows for uniform bounds for the derivatives of the solution of the related Kolmogorov equation, and then leads to weak rate ${\mathcal O}(\tau)$ in the presence of multiplicative noise. Hence, we obtain twice the rate of convergence known for the strong error in the presence of multiplicative noise.

相關內容

Multivariate imputation by chained equations (MICE) is one of the most popular approaches to address missing values in a data set. This approach requires specifying a univariate imputation model for every variable under imputation. The specification of which predictors should be included in these univariate imputation models can be a daunting task. Principal component analysis (PCA) can simplify this process by replacing all of the potential imputation model predictors with a few components summarizing their variance. In this article, we extend the use of PCA with MICE to include a supervised aspect whereby information from the variables under imputation is incorporated into the principal component estimation. We conducted an extensive simulation study to assess the statistical properties of MICE with different versions of supervised dimensionality reduction and we compared them with the use of classical unsupervised PCA as a simpler dimensionality reduction technique.

We propose and analyze a novel symmetric exponential wave integrator (sEWI) for the nonlinear Schr\"odinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ is the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For "good" potential and nonlinearity ($H^2$-potential and $\sigma \geq 1$), we establish an optimal second-order error bound in $L^2$-norm. For low regularity potential and nonlinearity ($L^\infty$-potential and $\sigma > 0$), we obtain a first-order $L^2$-norm error bound accompanied with a uniform $H^2$-norm bound of the numerical solution. Moreover, adopting a new technique of \textit{regularity compensation oscillation} (RCO) to analyze error cancellation, for some non-resonant time steps, the optimal second-order $L^2$-norm error bound is proved under a weaker assumption on the nonlinearity: $\sigma \geq 1/2$. For all the cases, we also present corresponding fractional order error bounds in $H^1$-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.

In [3] it was shown that four seemingly different algorithms for computing low-rank approximate solutions $X_j$ to the solution $X$ of large-scale continuous-time algebraic Riccati equations (CAREs) $0 = \mathcal{R}(X) := A^HX+XA+C^HC-XBB^HX $ generate the same sequence $X_j$ when used with the same parameters. The Hermitian low-rank approximations $X_j$ are of the form $X_j = Z_jY_jZ_j^H,$ where $Z_j$ is a matrix with only few columns and $Y_j$ is a small square Hermitian matrix. Each $X_j$ generates a low-rank Riccati residual $\mathcal{R}(X_j)$ such that the norm of the residual can be evaluated easily allowing for an efficient termination criterion. Here a new family of methods to generate such low-rank approximate solutions $X_j$ of CAREs is proposed. Each member of this family of algorithms proposed here generates the same sequence of $X_j$ as the four previously known algorithms. The approach is based on a block rational Arnoldi decomposition and an associated block rational Krylov subspace spanned by $A^H$ and $C^H.$ Two specific versions of the general algorithm will be considered; one will turn out to be a rediscovery of the RADI algorithm, the other one allows for a slightly more efficient implementation compared to the RADI algorithm. Moreover, our approach allows for adding more than one shift at a time.

In this paper, a linear second order numerical scheme is developed and investigated for the Allen-Cahn equation with a general positive mobility. In particular, our fully discrete scheme is mainly constructed based on the Crank-Nicolson formula for temporal discretization and the central finite difference method for spatial approximation, and two extra stabilizing terms are also introduced for the purpose of improving numerical stability. The proposed scheme is shown to unconditionally preserve the maximum bound principle (MBP) under mild restrictions on the stabilization parameters, which is of practical importance for achieving good accuracy and stability simultaneously. With the help of uniform boundedness of the numerical solutions due to MBP, we then successfully derive $H^{1}$-norm and $L^{\infty}$-norm error estimates for the Allen-Cahn equation with a constant and a variable mobility, respectively. Moreover, the energy stability of the proposed scheme is also obtained in the sense that the discrete free energy is uniformly bounded by the one at the initial time plus a {\color{black}constant}. Finally, some numerical experiments are carried out to verify the theoretical results and illustrate the performance of the proposed scheme with a time adaptive strategy.

We give a simple and computationally efficient algorithm that, for any constant $\varepsilon>0$, obtains $\varepsilon T$-swap regret within only $T = \mathsf{polylog}(n)$ rounds; this is an exponential improvement compared to the super-linear number of rounds required by the state-of-the-art algorithm, and resolves the main open problem of [Blum and Mansour 2007]. Our algorithm has an exponential dependence on $\varepsilon$, but we prove a new, matching lower bound. Our algorithm for swap regret implies faster convergence to $\varepsilon$-Correlated Equilibrium ($\varepsilon$-CE) in several regimes: For normal form two-player games with $n$ actions, it implies the first uncoupled dynamics that converges to the set of $\varepsilon$-CE in polylogarithmic rounds; a $\mathsf{polylog}(n)$-bit communication protocol for $\varepsilon$-CE in two-player games (resolving an open problem mentioned by [Babichenko-Rubinstein'2017, Goos-Rubinstein'2018, Ganor-CS'2018]; and an $\tilde{O}(n)$-query algorithm for $\varepsilon$-CE (resolving an open problem of [Babichenko'2020] and obtaining the first separation between $\varepsilon$-CE and $\varepsilon$-Nash equilibrium in the query complexity model). For extensive-form games, our algorithm implies a PTAS for $\mathit{normal}$ $\mathit{form}$ $\mathit{correlated}$ $\mathit{equilibria}$, a solution concept often conjectured to be computationally intractable (e.g. [Stengel-Forges'08, Fujii'23]).

We construct a graph with $n$ vertices where the smoothed runtime of the 3-FLIP algorithm for the 3-Opt Local Max-Cut problem can be as large as $2^{\Omega(\sqrt{n})}$. This provides the first example where a local search algorithm for the Max-Cut problem can fail to be efficient in the framework of smoothed analysis. We also give a new construction of graphs where the runtime of the FLIP algorithm for the Local Max-Cut problem is $2^{\Omega(n)}$ for any pivot rule. This graph is much smaller and has a simpler structure than previous constructions.

We study least-squares trace regression when the parameter is the sum of a $r$-low-rank and a $s$-sparse matrices and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions, we highlight three design properties. The first, termed $\PP$, handles additive decomposition and follows from a product process inequality. The second, termed $\IP$, handles both label contamination and additive decomposition. It follows from Chevet's inequality. The third, termed $\MP$, handles the interaction between the design and featured-dependent noise. It follows from a multiplier process inequality. Jointly, these properties entail the near-optimality of a tractable estimator with respect to the effective dimensions $d_{\eff,r}$ and $d_{\eff,s}$ for the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. This rate has the form $$ \mathsf{r}(n,d_{\eff,r}) + \mathsf{r}(n,d_{\eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon). $$ Here, $\mathsf{r}(n,d_{\eff,r})+\mathsf{r}(n,d_{\eff,s})$ is the optimal uncontaminated rate, independent of $\delta$. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Disconsidering matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Finally, we consider robust matrix completion. We highlight a new property for this problem: one can robustly and optimally estimate the incomplete matrix regardless of the \emph{magnitude of the corruption}. Our estimators are based on ``sorted'' versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of ``sorted'' Huber loss over the classical Huber's loss.

High-dimensional fractional reaction-diffusion equations have numerous applications in the fields of biology, chemistry, and physics, and exhibit a range of rich phenomena. While classical algorithms have an exponential complexity in the spatial dimension, a quantum computer can produce a quantum state that encodes the solution with only polynomial complexity, provided that suitable input access is available. In this work, we investigate efficient quantum algorithms for linear and nonlinear fractional reaction-diffusion equations with periodic boundary conditions. For linear equations, we analyze and compare the complexity of various methods, including the second-order Trotter formula, time-marching method, and truncated Dyson series method. We also present a novel algorithm that combines the linear combination of Hamiltonian simulation technique with the interaction picture formalism, resulting in optimal scaling in the spatial dimension. For nonlinear equations, we employ the Carleman linearization method and propose a block-encoding version that is appropriate for the dense matrices that arise from the spatial discretization of fractional reaction-diffusion equations.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

This paper analyzes a $\theta$-method and 3-point time filter. This approach adds one additional line of code to the existing source code of $\theta$-method. We prove the method's $0$-stability, accuracy, and $A$-stability for both constant time step and variable time step. Some numerical tests are performed to validate the theoretical results.

北京阿比特科技有限公司