亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose and analyze a novel symmetric exponential wave integrator (sEWI) for the nonlinear Schr\"odinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ is the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For "good" potential and nonlinearity ($H^2$-potential and $\sigma \geq 1$), we establish an optimal second-order error bound in $L^2$-norm. For low regularity potential and nonlinearity ($L^\infty$-potential and $\sigma > 0$), we obtain a first-order $L^2$-norm error bound accompanied with a uniform $H^2$-norm bound of the numerical solution. Moreover, adopting a new technique of \textit{regularity compensation oscillation} (RCO) to analyze error cancellation, for some non-resonant time steps, the optimal second-order $L^2$-norm error bound is proved under a weaker assumption on the nonlinearity: $\sigma \geq 1/2$. For all the cases, we also present corresponding fractional order error bounds in $H^1$-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.

相關內容

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

In this paper, a two-sided variable-coefficient space-fractional diffusion equation with fractional Neumann boundary condition is considered. To conquer the weak singularity caused by the nonlocal space-fractional differential operators, by introducing an auxiliary fractional flux variable and using piecewise linear interpolations, a fractional block-centered finite difference (BCFD) method on general nonuniform grids is proposed. However, like other numerical methods, the proposed method still produces linear algebraic systems with unstructured dense coefficient matrices under the general nonuniform grids.Consequently, traditional direct solvers such as Gaussian elimination method shall require $\mathcal{O}(M^2)$ memory and $\mathcal{O}(M^3)$ computational work per time level, where $M$ is the number of spatial unknowns in the numerical discretization. To address this issue, we combine the well-known sum-of-exponentials (SOE) approximation technique with the fractional BCFD method to propose a fast version fractional BCFD algorithm. Based upon the Krylov subspace iterative methods, fast matrix-vector multiplications of the resulting coefficient matrices with any vector are developed, in which they can be implemented in only $\mathcal{O}(MN_{exp})$ operations per iteration, where $N_{exp}\ll M$ is the number of exponentials in the SOE approximation. Moreover, the coefficient matrices do not necessarily need to be generated explicitly, while they can be stored in $\mathcal{O}(MN_{exp})$ memory by only storing some coefficient vectors. Numerical experiments are provided to demonstrate the efficiency and accuracy of the method.

A fully discrete low-regularity integrator with high-frequency recovery techniques is constructed to approximate rough and possibly discontinuous solutions of the semilinear wave equation. The proposed method can capture the discontinuities of the solutions correctly without spurious oscillations and can approximate rough and discontinuous solutions with a higher convergence rate than pre-existing methods. Rigorous analysis is presented for the convergence rates of the proposed method in approximating solutions such that $(u,\partial_{t}u)\in C([0,T];H^{\gamma}\times H^{\gamma-1})$ for $\gamma\in(0,1]$. For discontinuous solutions of bounded variation in one dimension (which allow jump discontinuities), the proposed method is proved to have almost first-order convergence under the step size condition $\tau \sim N^{-1}$, where $\tau$ and $N$ denote the time step size and the number of Fourier terms in the space discretization, respectively. Extensive numerical examples are presented in both one and two dimensions to illustrate the advantages of the proposed method in improving the accuracy in approximating rough and discontinuous solutions of the semilinear wave equation. The numerical results are consistent with the theoretical results and show the efficiency of the proposed method.

In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.

We investigate the performance of two approximation algorithms for the Hafnian of a nonnegative square matrix, namely the Barvinok and Godsil-Gutman estimators. We observe that, while there are examples of matrices for which these algorithms fail to provide a good approximation, the algorithms perform surprisingly well for adjacency matrices of random graphs. In most cases, the Godsil-Gutman estimator provides a far superior accuracy. For dense graphs, however, both estimators demonstrate a slow growth of the variance. For complete graphs, we show analytically that the relative variance $\sigma / \mu$ grows as a square root of the size of the graph. Finally, we simulate a Gaussian Boson Sampling experiment using the Godsil-Gutman estimator and show that the technique used can successfully reproduce low-order correlation functions.

We study the Weyl formula for the asymptotic number of eigenvalues of the Laplace-Beltrami operator with Dirichlet boundary condition on a Riemannian manifold in the context of geometric flows. Assuming the eigenvalues to be the energies of some associated statistical system, we show that geometric flows are directly related with the direction of increasing entropy chosen. For a closed Riemannian manifold we obtain a volume preserving flow of geometry being equivalent to the increment of Gibbs entropy function derived from the spectrum of Laplace-Beltrami operator. Resemblance with Arnowitt, Deser, and Misner (ADM) formalism of gravity is also noted by considering open Riemannian manifolds, directly equating the geometric flow parameter and the direction of increasing entropy as time direction.

This paper develops some theory of the matrix Dyson equation (MDE) for correlated linearizations and uses it to solve a problem on asymptotic deterministic equivalent for the test error in random features regression. The theory developed for the correlated MDE includes existence-uniqueness, spectral support bounds, and stability properties of the MDE. This theory is new for constructing deterministic equivalents for pseudoresolvents of a class of correlated linear pencils. In the application, this theory is used to give a deterministic equivalent of the test error in random features ridge regression, in a proportional scaling regime, wherein we have conditioned on both training and test datasets.

A class of (block) rational Krylov subspace based projection method for solving large-scale continuous-time algebraic Riccati equation (CARE) $0 = \mathcal{R}(X) := A^HX + XA + C^HC - XBB^HX$ with a large, sparse $A$ and $B$ and $C$ of full low rank is proposed. The CARE is projected onto a block rational Krylov subspace $\mathcal{K}_j$ spanned by blocks of the form $(A^H+ s_kI)C^H$ for some shifts $s_k, k = 1, \ldots, j.$ The considered projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi decomposition associated to $\mathcal{K}_j.$ The resulting projected Riccati equation is solved for the small square Hermitian $Y_j.$ Then the Hermitian low-rank approximation $X_j = Z_jY_jZ_j^H$ to $X$ is set up where the columns of $Z_j$ span $\mathcal{K}_j.$ The residual norm $\|R(X_j )\|_F$ can be computed efficiently via the norm of a readily available $2p \times 2p$ matrix. We suggest to reduce the rank of the approximate solution $X_j$ even further by truncating small eigenvalues from $X_j.$ This truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of $\mathcal{K}_j.$ This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, their performance relies on the knowledge of dynamic models and measurement models, as well as the construction of effective proposal distributions. An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent, and such data-adaptive particle filtering approaches are often called differentiable particle filters. Due to the expressiveness of neural networks, differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks, such as vision-based robot localisation. In this paper, we review recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices for key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.

This manuscript is devoted to investigating the conservation laws of incompressible Navier-Stokes equations(NSEs), written in the energy-momentum-angular momentum conserving(EMAC) formulation, after being linearized by the two-level methods. With appropriate correction steps(e.g., Stoke/Newton corrections), we show that the two-level methods, discretized from EMAC NSEs, could preserve momentum, angular momentum, and asymptotically preserve energy. Error estimates and (asymptotic) conservative properties are analyzed and obtained, and numerical experiments are conducted to validate the theoretical results, mainly confirming that the two-level linearized methods indeed possess the property of (almost) retainability on conservation laws. Moreover, experimental error estimates and optimal convergence rates of two newly defined types of pressure approximation in EMAC NSEs are also obtained.

北京阿比特科技有限公司