亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offensive speech detection is a key component of content moderation. However, what is offensive can be highly subjective. This paper investigates how machine and human moderators disagree on what is offensive when it comes to real-world social web political discourse. We show that (1) there is extensive disagreement among the moderators (humans and machines); and (2) human and large-language-model classifiers are unable to predict how other human raters will respond, based on their political leanings. For (1), we conduct a noise audit at an unprecedented scale that combines both machine and human responses. For (2), we introduce a first-of-its-kind dataset of vicarious offense. Our noise audit reveals that moderation outcomes vary wildly across different machine moderators. Our experiments with human moderators suggest that political leanings combined with sensitive issues affect both first-person and vicarious offense. The dataset is available through //github.com/Homan-Lab/voiced.

相關內容

Blockchain applications are witnessing rapid evolution, necessitating the integration of upgradeable smart contracts. Software patterns have been proposed to summarize upgradeable smart contract best practices. However, research is missing on the comparison of these upgradeable smart contract patterns, especially regarding gas costs related to deployment and execution. This study aims to provide an in-depth analysis of gas costs associated with two prevalent upgradeable smart contract patterns: the Proxy and diamond patterns. The Proxy pattern utilizes a Proxy pointing to a logic contract, while the diamond pattern enables a Proxy to point to multiple logic contracts. We conduct a comparative analysis of gas costs for both patterns in contrast to a traditional non-upgradeable smart contract. We derive from this analysis a theoretical contribution in the form of two consolidated blockchain patterns and a corresponding decision model. By so doing we hope to contribute to the broader understanding of upgradeable smart contract patterns.

Eye typing interfaces enable a person to enter text into an interface using only their own eyes. But despite the inherent advantages of touchless operation and intuitive design, such eye-typing interfaces often suffer from slow typing speeds, resulting in slow words per minute (WPM) counts. In this study, we add word and letter prediction to the eye-typing interface and investigate users' typing performance as well as their subjective experience while using the interface. In experiment 1, we compared three typing interfaces with letter prediction (LP), letter+word prediction (L+WP), and no prediction (NoP), respectively. We found that the interface with L+WP achieved the highest average text entry speed (5.48 WPM), followed by the interface with LP (3.42 WPM), and the interface with NoP (3.39 WPM). Participants were able to quickly understand the procedural design for word prediction and perceived this function as very helpful. Compared to LP and NoP, participants needed more time to familiarize themselves with L+WP in order to reach a plateau regarding text entry speed. Experiment 2 explored training effects in L+WP interfaces. Two moving speeds were implemented: slow (6.4{\deg}/s same speed as in experiment 1) and fast (10{\deg}/s). The study employed a mixed experimental design, incorporating moving speeds as a between-subjects factor, to evaluate its influence on typing performance throughout 10 consecutive training sessions. The results showed that the typing speed reached 6.17 WPM for the slow group and 7.35 WPM for the fast group after practice. Overall, the two experiments show that adding letter and word prediction to eye-typing interfaces increases typing speeds. We also find that more extended training is required to achieve these high typing speeds.

The roll out of 5G has been mainly characterized by its distinct support for vertical industries, especially manufacturing. Leveraging synergies among these two worlds, namely production facilities and network systems, is a fundamental aspect to enable flexibility and economic viability in future factories. This work highlights the potential for intelligent networking and advanced machine learning-based solutions in 5G-and-beyond systems in the context of Industry 4.0 and flexible manufacturing. The intersection thereof allows to create versatile machines and dynamic communication networks that can adapt to changes in the manufacturing process, factory layout and communication environment, supporting real-time interaction between humans, machines, and systems. We present a vision and corresponding framework by introducing the network-aware and production-aware principles, outlining results achieved in this context and summarizing them into three key use cases. Finally, we discuss a selection of remaining open challenges in private networks as well as give an outlook on future 6G research directions.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司