亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter $\lambda>0$. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete $\Delta$-regular tree for all $\lambda$. However, Restrepo et al. (2014) showed that for sufficiently large $\lambda$ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of $O(n)$ for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for $\lambda\leq .44$ we prove an optimal mixing time bound of $O(n\log{n})$. We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree $\Delta$. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order $\lambda=O(1/\Delta)$. Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.

相關內容

We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manages the resulting non-conforming mesh. To streamline complex and repetitive calculations such as sensitivity analysis and solution of inverse problems, we utilize the Deep Learning Reduced Order Model (DL-ROM). This non-intrusive neural network-based technique is evaluated against the traditional Proper Orthogonal Decomposition (POD) method across various scenarios, demonstrating DL-ROM's capacity to expedite complex analyses with promising accuracy and efficiency.

This paper presents our work to enhance the background music (BGM) in DareFightingICE by adding adaptive features. The adaptive BGM consists of three different categories of instruments playing the BGM of the winner sound design from the 2022 DareFightingICE Competition. The BGM adapts by changing the volume of each category of instruments. Each category is connected to a different element of the game. We then run experiments to evaluate the adaptive BGM by using a deep reinforcement learning AI agent that only uses audio as input (Blind DL AI). The results show that the performance of the Blind DL AI improves while playing with the adaptive BGM as compared to playing without the adaptive BGM.

This paper presents our work to enhance the background music (BGM) in DareFightingICE by adding an adaptive BGM. The adaptive BGM consists of five different instruments playing a classical music piece called "Air on G-String." The BGM adapts by changing the volume of the instruments. Each instrument is connected to a different element of the game. We then run experiments to evaluate the adaptive BGM by using a deep reinforcement learning AI that only uses audio as input (Blind DL AI). The results show that the performance of the Blind DL AI improves while playing with the adaptive BGM as compared to playing without the adaptive BGM.

Conventional multi-hop fact verification models are prone to rely on spurious correlations from the annotation artifacts, leading to an obvious performance decline on unbiased datasets. Among the various debiasing works, the causal inference-based methods become popular by performing theoretically guaranteed debiasing such as casual intervention or counterfactual reasoning. However, existing causal inference-based debiasing methods, which mainly formulate fact verification as a single-hop reasoning task to tackle shallow bias patterns, cannot deal with the complicated bias patterns hidden in multiple hops of evidence. To address the challenge, we propose Causal Walk, a novel method for debiasing multi-hop fact verification from a causal perspective with front-door adjustment. Specifically, in the structural causal model, the reasoning path between the treatment (the input claim-evidence graph) and the outcome (the veracity label) is introduced as the mediator to block the confounder. With the front-door adjustment, the causal effect between the treatment and the outcome is decomposed into the causal effect between the treatment and the mediator, which is estimated by applying the idea of random walk, and the causal effect between the mediator and the outcome, which is estimated with normalized weighted geometric mean approximation. To investigate the effectiveness of the proposed method, an adversarial multi-hop fact verification dataset and a symmetric multi-hop fact verification dataset are proposed with the help of the large language model. Experimental results show that Causal Walk outperforms some previous debiasing methods on both existing datasets and the newly constructed datasets. Code and data will be released at //github.com/zcccccz/CausalWalk.

A major open problem in proof complexity is to show that random 3-CNFs with linear number of clauses require super-polynomial size refutations in bounded depth Frege. We make a first step towards this question by showing a super-linear lower bound: for every $k$, there exists $\epsilon > 0$ such that any depth-$k$ Frege refutation of a random $n$-variable 3-CNF with $\Theta(n)$ clauses has $\Omega(n^{1 + \epsilon})$ steps w.h.p. Our proof involves a novel adaptation of the deterministic restriction technique of Chaudhuri and Radhakrishnan (STOC'96).

The Max-Flow Min-Cut theorem is the classical duality result for the Max-Flow problem, which considers flow of a single commodity. We study a multiple commodity generalization of Max-Flow in which flows are composed of real-valued k-vectors through networks with arc capacities formed by regions in \R^k. Given the absence of a clear notion of ordering in the multicommodity case, we define the generalized max flow as the feasible region of all flow values. We define a collection of concepts and operations on flows and cuts in the multicommodity setting. We study the mutual capacity of a set of cuts, defined as the set of flows that can pass through all cuts in the set. We present a method to calculate the mutual capacity of pairs of cuts, and then generalize the same to a method of calculation for arbitrary sets of cuts. We show that the mutual capacity is exactly the set of feasible flows in the network, and hence is equal to the max flow. Furthermore, we present a simple class of the multicommodity max flow problem where computations using this tight duality result could run significantly faster than default brute force computations. We also study more tractable special cases of the multicommodity max flow problem where the objective is to transport a maximum real or integer multiple of a given vector through the network. We devise an augmenting cycle search algorithm that reduces the optimization problem to one with m constraints in at most \R^{(m-n+1)k} space from one that requires mn constraints in \R^{mk} space for a network with n nodes and m edges. We present efficient algorithms that compute eps-approximations to both the ratio and the integer ratio maximum flow problems.

Languages may encode similar meanings using different sentence structures. This makes it a challenge to provide a single set of formal rules that can derive meanings from sentences in many languages at once. To overcome the challenge, we can take advantage of language-general connections between meaning and syntax, and build on cross-linguistically parallel syntactic structures. We introduce UD Type Calculus, a compositional, principled, and language-independent system of semantic types and logical forms for lexical items which builds on a widely-used language-general dependency syntax framework. We explain the essential features of UD Type Calculus, which all involve giving dependency relations denotations just like those of words. These allow UD-TC to derive correct meanings for sentences with a wide range of syntactic structures by making use of dependency labels. Finally, we present evaluation results on a large existing corpus of sentences and their logical forms, showing that UD-TC can produce meanings comparable with our baseline.

Large Language Models (LLMs) frequently struggle with complex reasoning tasks, failing to construct logically sound steps towards the solution. In response to this behavior, users often try prompting the LLMs repeatedly in hopes of reaching a better response. This paper studies such repetitive behavior and its effect by defining a novel setting, Chain-of-Feedback (CoF). The setting takes questions that require multi-step reasoning as an input. Upon response, we repetitively prompt meaningless feedback (e.g. 'make another attempt') requesting additional trials. Surprisingly, our preliminary results show that repeated meaningless feedback gradually decreases the quality of the responses, eventually leading to a larger deviation from the intended outcome. To alleviate these troubles, we propose a novel method, Recursive Chain-of-Feedback (R-CoF). Following the logic of recursion in computer science, R-CoF recursively revises the initially incorrect response by breaking down each incorrect reasoning step into smaller individual problems. Our preliminary results show that majority of questions that LLMs fail to respond correctly can be answered using R-CoF without any sample data outlining the logical process.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司