亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a Cartesian grid-based boundary integral method for efficiently and stably solving two representative moving interface problems, the Hele-Shaw flow and the Stefan problem. Elliptic and parabolic partial differential equations (PDEs) are reformulated into boundary integral equations and are then solved with the matrix-free generalized minimal residual (GMRES) method. The evaluation of boundary integrals is performed by solving equivalent and simple interface problems with finite difference methods, allowing the use of fast PDE solvers, such as fast Fourier transform (FFT) and geometric multigrid methods. The interface curve is evolved utilizing the $\theta-L$ variables instead of the more commonly used $x-y$ variables. This choice simplifies the preservation of mesh quality during the interface evolution. In addition, the $\theta-L$ approach enables the design of efficient and stable time-stepping schemes to remove the stiffness that arises from the curvature term. Ample numerical examples, including simulations of complex viscous fingering and dendritic solidification problems, are presented to showcase the capability of the proposed method to handle challenging moving interface problems.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We introduce novel Markov chain Monte Carlo (MCMC) algorithms based on numerical approximations of piecewise-deterministic Markov processes obtained with the framework of splitting schemes. We present unadjusted as well as adjusted algorithms, for which the asymptotic bias due to the discretisation error is removed applying a non-reversible Metropolis-Hastings filter. In a general framework we demonstrate that the unadjusted schemes have weak error of second order in the step size, while typically maintaining a computational cost of only one gradient evaluation of the negative log-target function per iteration. Focusing then on unadjusted schemes based on the Bouncy Particle and Zig-Zag samplers, we provide conditions ensuring geometric ergodicity and consider the expansion of the invariant measure in terms of the step size. We analyse the dependence of the leading term in this expansion on the refreshment rate and on the structure of the splitting scheme, giving a guideline on which structure is best. Finally, we illustrate the competitiveness of our samplers with numerical experiments on a Bayesian imaging inverse problem and a system of interacting particles.

We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.

This paper introduces a mathematical framework for explicit structural dynamics, employing approximate dual functionals and rowsum mass lumping. We demonstrate that the approach may be interpreted as a Petrov-Galerkin method that utilizes rowsum mass lumping or as a Galerkin method with a customized higher-order accurate mass matrix. Unlike prior work, our method correctly incorporates Dirichlet boundary conditions while preserving higher order accuracy. The mathematical analysis is substantiated by spectral analysis and a two-dimensional linear benchmark that involves a non-linear geometric mapping. Our results reveal that our approach achieves accuracy and robustness comparable to a traditional Galerkin method employing the consistent mass formulation, while retaining the explicit nature of the lumped mass formulation.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

We formulate and test a technique to use Emergent Communication (EC) with a pre-trained multilingual model to improve on modern Unsupervised NMT systems, especially for low-resource languages. It has been argued that the current dominant paradigm in NLP of pre-training on text-only corpora will not yield robust natural language understanding systems, and the need for grounded, goal-oriented, and interactive language learning has been high lighted. In our approach, we embed a multilingual model (mBART, Liu et al., 2020) into an EC image-reference game, in which the model is incentivized to use multilingual generations to accomplish a vision-grounded task. The hypothesis is that this will align multiple languages to a shared task space. We present two variants of EC Fine-Tuning (Steinert-Threlkeld et al., 2022), one of which outperforms a backtranslation-only baseline in all four languages investigated, including the low-resource language Nepali.

We present a semi-Lagrangian characteristic mapping method for the incompressible Euler equations on a rotating sphere. The numerical method uses a spatio-temporal discretization of the inverse flow map generated by the Eulerian velocity as a composition of sub-interval flows formed by $C^1$ spherical spline interpolants. This approximation technique has the capacity of resolving sub-grid scales generated over time without increasing the spatial resolution of the computational grid. The numerical method is analyzed and validated using standard test cases yielding third-order accuracy in the supremum norm. Numerical experiments illustrating the unique resolution properties of the method are performed and demonstrate the ability to reproduce the forward energy cascade at sub-grid scales by upsampling the numerical solution.

In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, if the PDE admits a strong solution, then the gradient of the unique solution of the PDE coincides with the second component of the unique solution of the stochastic fixed-point equation.

The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

This paper proposes a simple method for balancing distributions of covariates for causal inference based on observational studies. The method makes it possible to balance an arbitrary number of quantiles (e.g., medians, quartiles, or deciles) together with means if necessary. The proposed approach is based on the theory of calibration estimators (Deville and S\"arndal 1992), in particular, calibration estimators for quantiles, proposed by Harms and Duchesne (2006). By modifying the entropy balancing method and the covariate balancing propensity score method, it is possible to balance the distributions of the treatment and control groups. The method does not require numerical integration, kernel density estimation or assumptions about the distributions; valid estimates can be obtained by drawing on existing asymptotic theory. Results of a simulation study indicate that the method efficiently estimates average treatment effects on the treated (ATT), the average treatment effect (ATE), the quantile treatment effect on the treated (QTT) and the quantile treatment effect (QTE), especially in the presence of non-linearity and mis-specification of the models. The proposed methods are implemented in an open source R package jointCalib.

北京阿比特科技有限公司