We consider a matching problem in a bipartite graph $G=(A\cup B,E)$ where each node in $A$ is an agent having preferences in partial order over her neighbors, while nodes in $B$ are objects with no preferences. The size of our matching is more important than node preferences; thus, we are interested in maximum matchings only. Any pair of maximum matchings in $G$ (equivalently, perfect matchings or assignments) can be compared by holding a head-to-head election between them where agents are voters. The goal is to compute an assignment $M$ such that there is no better or "more popular" assignment. This is the popular assignment problem and it generalizes the well-studied popular matching problem. Popular assignments need not always exist. We show a polynomial-time algorithm that decides if the given instance admits one or not, and computes one, if so. In instances with no popular assignment, we consider the problem of finding an almost popular assignment, i.e., an assignment with minimum unpopularity margin. We show an $O^*(|E|^k)$ time algorithm for deciding if there exists an assignment with unpopularity margin at most $k$. We show that this algorithm is essentially optimal by proving that the problem is $\mathsf{W}_l[1]$-hard with parameter $k$. We also consider the minimum-cost popular assignment problem when there are edge costs, and show its $\mathsf{NP}$-hardness even when all edge costs are in $\{0,1\}$ and agents have strict preferences. By contrast, we propose a polynomial-time algorithm to the problem of deciding if there exists a popular assignment with a given set of forced/forbidden edges (this tractability holds even for partially ordered preferences). Our algorithms are combinatorial and based on LP duality. They search for an appropriate witness or dual certificate, and when a certificate cannot be found, we prove that the desired assignment does not exist in $G$.
A Boolean constraint satisfaction problem (CSP), $\textsf{Max-CSP}(f)$, is a maximization problem specified by a constraint $f:\{-1,1\}^k\to\{0,1\}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal is to compute the maximum number of constraints that can be satisfied by a Boolean assignment to the $n$~variables. In the $(\gamma,\beta)$-approximation version of the problem for parameters $\gamma \geq \beta \in [0,1]$, the goal is to distinguish instances where at least $\gamma$ fraction of the constraints can be satisfied from instances where at most $\beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the (dynamic) streaming setting, where constraints are inserted (and may also be deleted in the dynamic setting) one at a time. We completely characterize the approximability of all Boolean CSPs in the dynamic streaming setting. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a probabilistic dynamic streaming algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for probabilistic dynamic streaming algorithms. We also extend previously known results in the insertion-only setting to a wide variety of cases, and in particular the case of $k=2$ where we get a dichotomy and the case when the satisfying assignments of $f$ support a distribution on $\{-1,1\}^k$ with uniform marginals.
We study a family of reachability problems under waiting-time restrictions in temporal and vertex-colored temporal graphs. Given a temporal graph and a set of source vertices, we find the set of vertices that are reachable from a source via a time-respecting path, where the difference in timestamps between consecutive edges is at most a resting time. Given a vertex-colored temporal graph and a multiset query of colors, we find the set of vertices reachable from a source via a time-respecting path such that the vertex colors of the path agree with the multiset query and the difference in timestamps between consecutive edges is at most a resting time. These kind of problems have several applications in understanding the spread of a disease in a network, tracing contacts in epidemic outbreaks, finding signaling pathways in the brain network, and recommending tours for tourists. We present an algebraic algorithmic framework based on constrained multilinear sieving for solving the restless reachability problems we propose. In particular, parameterized by the length of a path $k$ sought, we show the problems can be solved in $O(2^k k m \Delta)$ time and $O(n \tau)$ space, where $n$ is the number of vertices, $m$ the number of edges, $\Delta$ the maximum resting time and $\tau$ the maximum timestamp of an input temporal graph. In addition, we prove that the algorithms presented for the restless reachability problems in vertex-colored temporal graphs are optimal under plausible complexity-theoretic assumptions. Finally, with an open-source implementation, we demonstrate that our algorithm scales to large graphs with up to one billion temporal edges, despite the problems being NP-hard. Specifically, we present extensive experiments to evaluate our scalability claims both on synthetic and real-world graphs.
Recent advances at the intersection of dense large graph limits and mean field games have begun to enable the scalable analysis of a broad class of dynamical sequential games with large numbers of agents. So far, results have been largely limited to graphon mean field systems with continuous-time diffusive or jump dynamics, typically without control and with little focus on computational methods. We propose a novel discrete-time formulation for graphon mean field games as the limit of non-linear dense graph Markov games with weak interaction. On the theoretical side, we give extensive and rigorous existence and approximation properties of the graphon mean field solution in sufficiently large systems. On the practical side, we provide general learning schemes for graphon mean field equilibria by either introducing agent equivalence classes or reformulating the graphon mean field system as a classical mean field system. By repeatedly finding a regularized optimal control solution and its generated mean field, we successfully obtain plausible approximate Nash equilibria in otherwise infeasible large dense graph games with many agents. Empirically, we are able to demonstrate on a number of examples that the finite-agent behavior comes increasingly close to the mean field behavior for our computed equilibria as the graph or system size grows, verifying our theory. More generally, we successfully apply policy gradient reinforcement learning in conjunction with sequential Monte Carlo methods.
Hamiltonian cycles in graphs were first studied in the 1850s. Since then, an impressive amount of research has been dedicated to identifying classes of graphs that allow Hamiltonian cycles, and to related questions. The corresponding decision problem, that asks whether a given graph is Hamiltonian (i.\,e.\ admits a Hamiltonian cycle), is one of Karp's famous NP-complete problems. In this paper we study graphs of bounded degree that are \emph{far} from being Hamiltonian, where a graph $G$ on $n$ vertices is \emph{far} from being Hamiltonian, if modifying a constant fraction of $n$ edges is necessary to make $G$ Hamiltonian. We give an explicit deterministic construction of a class of graphs of bounded degree that are locally Hamiltonian, but (globally) far from being Hamiltonian. Here, \emph{locally Hamiltonian} means that every subgraph induced by the neighbourhood of a small vertex set appears in some Hamiltonian graph. More precisely, we obtain graphs which differ in $\Theta(n)$ edges from any Hamiltonian graph, but non-Hamiltonicity cannot be detected in the neighbourhood of $o(n)$ vertices. Our class of graphs yields a class of hard instances for one-sided error property testers with linear query complexity. It is known that any property tester (even with two-sided error) requires a linear number of queries to test Hamiltonicity (Yoshida, Ito, 2010). This is proved via a randomised construction of hard instances. In contrast, our construction is deterministic. So far only very few deterministic constructions of hard instances for property testing are known. We believe that our construction may lead to future insights in graph theory and towards a characterisation of the properties that are testable in the bounded-degree model.
In 2005, Goddard, Hedetniemi, Hedetniemi and Laskar [Generalized subgraph-restricted matchings in graphs, Discrete Mathematics, 293 (2005) 129 - 138] asked the computational complexity of determining the maximum cardinality of a matching whose vertex set induces a disconnected graph. In this paper we answer this question. In fact, we consider the generalized problem of finding $c$-disconnected matchings; such matchings are ones whose vertex sets induce subgraphs with at least $c$ connected components. We show that, for every fixed $c \geq 2$, this problem is NP-complete even if we restrict the input to bounded diameter bipartite graphs, while can be solved in polynomial time if $c = 1$. For the case when $c$ is part of the input, we show that the problem is NP-complete for chordal graphs, while being solvable in polynomial time for interval graphs. Finally, we explore the parameterized complexity of the problem. We present an FPT algorithm under the treewidth parameterization, and an XP algorithm for graphs with a polynomial number of minimal separators when parameterized by $c$. We complement these results by showing that, unless NP $\subseteq$ coNP/poly, the related Induced Matching problem does not admit a polynomial kernel when parameterized by vertex cover and size of the matching nor when parameterized by vertex deletion distance to clique and size of the matching. As for Connected Matching, we show how to obtain a maximum connected matching in linear time given an arbitrary maximum matching in the input.
A longstanding open problem in coding theory is to determine the best (asymptotic) rate $R_2(\delta)$ of binary codes with minimum constant (relative) distance $\delta$. An existential lower bound was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Delsarte's linear programs. To date these results remain the best known lower and upper bounds on $R_2(\delta)$ with no improvement even for the important class of linear codes. Asymptotically, these bounds differ by an exponential factor in the blocklength. In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the true size $A^{\text{Lin}}_2(n,d)$ of an optimum linear binary code (in fact, over any finite field) of a given blocklength $n$ and distance $d$. This hierarchy has several notable features: (i) It is a natural generalization of the Delsarte LPs used in the first MRRW bound. (ii) It is a hierarchy of linear programs rather than semi-definite programs potentially making it more amenable to theoretical analysis. (iii) It is complete in the sense that the optimum code size can be retrieved from level $O(n^2)$. (iv) It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the question of how to cut Delsarte's LP polytopes to approximate the true size of linear codes. We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams inequalities to a suitable "higher-order" version taking into account interactions of $\ell$ words. Our method also generalizes to translation schemes under mild assumptions.
A constraint satisfaction problem (CSP), $\textsf{Max-CSP}(\mathcal{F})$, is specified by a finite set of constraints $\mathcal{F} \subseteq \{[q]^k \to \{0,1\}\}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from $\mathcal{F}$ to subsequences of the $n$ variables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the $(\gamma,\beta)$-approximation version of the problem for parameters $0 \leq \beta < \gamma \leq 1$, the goal is to distinguish instances where at least $\gamma$ fraction of the constraints can be satisfied from instances where at most $\beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family $\mathcal{F}$ and every $\beta < \gamma$, we show that either a linear sketching algorithm solves the problem in polylogarithmic space, or the problem is not solvable by any sketching algorithm in $o(\sqrt{n})$ space.
We show that determining if an $n$-vertex graph has twin-width at most 4 is NP-complete, and requires time $2^{\Omega(n/\log n)}$ unless the Exponential-Time Hypothesis fails. Along the way, we give an elementary proof that $n$-vertex graphs subdivided at least $2 \log n$ times have twin-width at most 4. We also show how to encode trigraphs $H$ (2-edge colored graphs involved in the definition of twin-width) into graphs $G$, in the sense that every $d$-sequence (sequence of vertex contractions witnessing that the twin-width is at most $d$) of $G$ inevitably creates $H$ as an induced subtrigraph, whereas there exists a partial $d$-sequence that actually goes from $G$ to $H$. We believe that these facts and their proofs can be of independent interest.
A semidefinite program (SDP) is a particular kind of convex optimization problem with applications in operations research, combinatorial optimization, quantum information science, and beyond. In this work, we propose variational quantum algorithms for approximately solving SDPs. For one class of SDPs, we provide a rigorous analysis of their convergence to approximate locally optimal solutions, under the assumption that they are weakly constrained (i.e., $N\gg M$, where $N$ is the dimension of the input matrices and $M$ is the number of constraints). We also provide algorithms for a more general class of SDPs that requires fewer assumptions. Finally, we numerically simulate our quantum algorithms for applications such as MaxCut, and the results of these simulations provide evidence that convergence still occurs in noisy settings.
This paper studies the online correlated selection (OCS) problem. It was introduced by Fahrbach, Huang, Tao, and Zadimoghaddam (2020) to obtain the first edge-weighted online bipartite matching algorithm that breaks the $0.5$ barrier. Suppose that we receive a pair of elements in each round and immediately select one of them. Can we select with negative correlation to be more effective than independent random selections? Our contributions are threefold. For semi-OCS, which considers the probability that an element remains unselected after appearing in $k$ rounds, we give an optimal algorithm that minimizes this probability for all $k$. It leads to $0.536$-competitive unweighted and vertex-weighted online bipartite matching algorithms that randomize over only two options in each round, improving the $0.508$-competitive ratio by Fahrbach et al. (2020). Further, we develop the first multi-way semi-OCS that allows an arbitrary number of elements with arbitrary masses in each round. As an application, it rounds the Balance algorithm in unweighted and vertex-weighted online bipartite matching and is $0.593$-competitive. Finally, we study OCS, which further considers the probability that an element is unselected in an arbitrary subset of rounds. We prove that the optimal "level of negative correlation" is between $0.167$ and $0.25$, improving the previous bounds of $0.109$ and $1$ by Fahrbach et al. (2020). Our OCS gives a $0.519$-competitive edge-weighted online bipartite matching algorithm, improving the previous $0.508$-competitive ratio by Fahrbach et al. (2020).