亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The availability of digital twins for the cardiovascular system will enable insightful computational tools both for research and clinical practice. This, however, demands robust and well defined methods for the different steps involved in the process. We present a vessel coordinate system (VCS) that enables the unanbiguous definition of locations in a vessel section, by adapting the idea of cylindrical coordinates to the vessel geometry. Using the VCS, point correspondence can be defined among different samples of a cohort, allowing data transfer, quantitative comparison, shape coregistration or population analysis. We provide the technical details for coordinates computation and discuss the assumptions taken to guarantee that they are well defined. The VCS is tested in a series of applications. We present a robust, low dimensional, patient specific vascular model and use it to study phenotype variability analysis of the thoracic aorta within a cohort of patients. Point correspondence is exploited to build an haemodynamics atlas of the aorta for the same cohort. Across the paper, we also show how VCS can be used for visualization of different types of data on the anatomy.

相關內容

We consider unregularized robust M-estimators for linear models under Gaussian design and heavy-tailed noise, in the proportional asymptotics regime where the sample size n and the number of features p are both increasing such that $p/n \to \gamma\in (0,1)$. An estimator of the out-of-sample error of a robust M-estimator is analysed and proved to be consistent for a large family of loss functions that includes the Huber loss. As an application of this result, we propose an adaptive tuning procedure of the scale parameter $\lambda>0$ of a given loss function $\rho$: choosing$\hat \lambda$ in a given interval $I$ that minimizes the out-of-sample error estimate of the M-estimator constructed with loss $\rho_\lambda(\cdot) = \lambda^2 \rho(\cdot/\lambda)$ leads to the optimal out-of-sample error over $I$. The proof relies on a smoothing argument: the unregularized M-estimation objective function is perturbed, or smoothed, with a Ridge penalty that vanishes as $n\to+\infty$, and show that the unregularized M-estimator of interest inherits properties of its smoothed version.

Geometric deep learning refers to the scenario in which the symmetries of a dataset are used to constrain the parameter space of a neural network and thus, improve their trainability and generalization. Recently this idea has been incorporated into the field of quantum machine learning, which has given rise to equivariant quantum neural networks (EQNNs). In this work, we investigate the role of classical-to-quantum embedding on the performance of equivariant quantum convolutional neural networks (EQCNNs) for the classification of images. We discuss the connection between the data embedding method and the resulting representation of a symmetry group and analyze how changing representation affects the expressibility of an EQCNN. We numerically compare the classification accuracy of EQCNNs with three different basis-permuted amplitude embeddings to the one obtained from a non-equivariant quantum convolutional neural network (QCNN). Our results show that all the EQCNNs achieve higher classification accuracy than the non-equivariant QCNN for small numbers of training iterations, while for large iterations this improvement crucially depends on the used embedding. It is expected that the results of this work can be useful to the community for a better understanding of the importance of data embedding choice in the context of geometric quantum machine learning.

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), the starting point of the present work is that different ways to categorize a given set of objects exist, which depend on the choice of the sets of features used to classify them, and different such sets of features may yield better or worse categorizations, relative to the task at hand. In their turn, the (a priori) choice of a particular set of features over another might be subjective and express a certain epistemic stance (e.g. interests, relevance, preferences) of an agent or a group of agents, namely, their interrogative agenda. In the present paper, we represent interrogative agendas as sets of features, and explore and compare different ways to categorize objects w.r.t. different sets of features (agendas). We first develop a simple unsupervised FCA-based algorithm for outlier detection which uses categorizations arising from different agendas. We then present a supervised meta-learning algorithm to learn suitable (fuzzy) agendas for categorization as sets of features with different weights or masses. We combine this meta-learning algorithm with the unsupervised outlier detection algorithm to obtain a supervised outlier detection algorithm. We show that these algorithms perform at par with commonly used algorithms for outlier detection on commonly used datasets in outlier detection. These algorithms provide both local and global explanations of their results.

In this contribution, we derive a consistent variational formulation for computational homogenization methods and show that traditional FE2 and IGA2 approaches are special discretization and solution techniques of this most general framework. This allows us to enhance dramatically the numerical analysis as well as the solution of the arising algebraic system. In particular, we expand the dimension of the continuous system, discretize the higher dimensional problem consistently and apply afterwards a discrete null-space matrix to remove the additional dimensions. A benchmark problem, for which we can obtain an analytical solution, demonstrates the superiority of the chosen approach aiming to reduce the immense computational costs of traditional FE2 and IGA2 formulations to a fraction of the original requirements. Finally, we demonstrate a further reduction of the computational costs for the solution of general non-linear problems.

Coordinate exchange (CEXCH) is a popular algorithm for generating exact optimal experimental designs. The authors of CEXCH advocated for a highly greedy implementation - one that exchanges and optimizes single element coordinates of the design matrix. We revisit the effect of greediness on CEXCHs efficacy for generating highly efficient designs. We implement the single-element CEXCH (most greedy), a design-row (medium greedy) optimization exchange, and particle swarm optimization (PSO; least greedy) on 21 exact response surface design scenarios, under the $D$- and $I-$criterion, which have well-known optimal designs that have been reproduced by several researchers. We found essentially no difference in performance of the most greedy CEXCH and the medium greedy CEXCH. PSO did exhibit better efficacy for generating $D$-optimal designs, and for most $I$-optimal designs than CEXCH, but not to a strong degree under our parametrization. This work suggests that further investigation of the greediness dimension and its effect on CEXCH efficacy on a wider suite of models and criterion is warranted.

Quantum computing becomes more of a reality as time passes, bringing several cybersecurity challenges. Modern cryptography is based on the computational complexity of specific mathematical problems, but as new quantum-based computers appear, classical methods might not be enough to secure communications. In this paper, we analyse the state of the Galileo Open Service Navigation Message Authentication (OSNMA) to overcome these new threats. This analysis and its assessment have been performed using OSNMA documentation, reviewing the available Post Quantum Cryptography (PQC) algorithms competing in the National Institute of Standards and Technology (NIST) standardization process, and studying the possibility of its implementation in the Galileo service. The main barrier to adopting the PQC approach is the size of both the signature and the key. The analysis shows that OSNMA is not yet prepared to face the quantum threat, and a significant change would be required. This work concludes by assessing different temporal countermeasures that can be implemented to sustain the system's integrity in the short term.

Federated learning for training models over mobile devices is gaining popularity. Current systems for this task exhibit significant trade-offs between model accuracy, privacy guarantee, and device efficiency. For instance, Oort (OSDI 2021) provides excellent accuracy and efficiency but requires a trusted central server. On the other hand, Orchard (OSDI 2020) provides good accuracy and the rigorous guarantee of differential privacy over an untrusted server, but creates huge overhead for the devices. This paper describes Aero, a new federated learning system that significantly improves this trade-off. Aero guarantees good accuracy, differential privacy over an untrusted server, and keeps the device overhead low. The key idea of Aero is to tune system architecture and design to a specific set of popular, federated learning algorithms. This tuning requires novel optimizations and techniques, e.g., a new protocol to securely aggregate updates from devices. An evaluation of Aero demonstrates that it provides comparable accuracy to plain federated learning (without differential privacy), and it improves efficiency (CPU and network) over Orchard by up to $10^5\times$.

Neural networks are powerful tools in various applications, and quantifying their uncertainty is crucial for reliable decision-making. In the deep learning field, the uncertainties are usually categorized into aleatoric (data) and epistemic (model) uncertainty. In this paper, we point out that the existing popular variance attenuation method highly overestimates aleatoric uncertainty. To address this issue, we propose a new estimation method by actively de-noising the observed data \footnote{Source code available at \url{//github.com/wz16/DVA}.}. By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.

We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司