In [Meurant, Pape\v{z}, Tich\'y; Numerical Algorithms 88, 2021], we presented an adaptive estimate for the energy norm of the error in the conjugate gradient (CG) method. In this paper, we extend the estimate to algorithms for solving linear approximation problems with a general, possibly rectangular matrix that are based on applying CG to a system with a positive (semi-)definite matrix build from the original matrix. We show that the resulting estimate preserves its key properties: it can be very cheaply evaluated, and it is numerically reliable in finite-precision arithmetic under some mild assumptions. We discuss algorithms based on Hestenes-Stiefel-like implementation (often called CGLS and CGNE in the literature) as well as on bidiagonalization (LSQR and CRAIG), and both unpreconditioned and preconditioned variants. The numerical experiments confirm the robustness and very satisfactory behaviour of the estimate.
The problem of generalization and transportation of treatment effect estimates from a study sample to a target population is central to empirical research and statistical methodology. In both randomized experiments and observational studies, weighting methods are often used with this objective. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. In this work, we provide a justification and an implementation for weighting in a single step. We show a formal connection between this one-step method and inverse probability and inverse odds weighting. We demonstrate that the resulting estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We evaluate the performance of the one-step estimator in a simulation study. We illustrate its use in a case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California. We provide R code implementing the methodology.
In a Subgraph Problem we are given some graph and want to find a feasible subgraph that optimizes some measure. We consider Multistage Subgraph Problems (MSPs), where we are given a sequence of graph instances (stages) and are asked to find a sequence of subgraphs, one for each stage, such that each is optimal for its respective stage and the subgraphs for subsequent stages are as similar as possible. We present a framework that provides a $(1/\sqrt{2\chi})$-approximation algorithm for the $2$-stage restriction of an MSP if the similarity of subsequent solutions is measured as the intersection cardinality and said MSP is preficient, i.e., we can efficiently find a single-stage solution that prefers some given subset. The approximation factor is dependent on the instance's intertwinement $\chi$, a similarity measure for multistage graphs. We also show that for any MSP, independent of similarity measure and preficiency, given an exact or approximation algorithm for a constant number of stages, we can approximate the MSP for an unrestricted number of stages. Finally, we combine and apply these results and show that the above restrictions describe a very rich class of MSPs and that proving membership for this class is mostly straightforward. As examples, we explicitly state these proofs for natural multistage versions of Perfect Matching, Shortest s-t-Path, Minimum s-t-Cut and further classical problems on bipartite or planar graphs, namely Maximum Cut, Vertex Cover, Independent Set, and Biclique.
We propose a general framework for solving forward and inverse problems constrained by partial differential equations, where we interpolate neural networks onto finite element spaces to represent the (partial) unknowns. The framework overcomes the challenges related to the imposition of boundary conditions, the choice of collocation points in physics-informed neural networks, and the integration of variational physics-informed neural networks. A numerical experiment set confirms the framework's capability of handling various forward and inverse problems. In particular, the trained neural network generalises well for smooth problems, beating finite element solutions by some orders of magnitude. We finally propose an effective one-loop solver with an initial data fitting step (to obtain a cheap initialisation) to solve inverse problems.
In this paper, we propose and analyze the least squares finite element methods for the linear elasticity interface problem in the stress-displacement system on unfitted meshes. We consider the cases that the interface is $C^2$ or polygonal, and the exact solution $(\sigma,u)$ belongs to $H^s(div; \Omega_0 \cup \Omega_1) \times $H^{1+s}(\Omega_0 \cup \Omega_1)$ with $s > 1/2$. Two types of least squares functionals are defined to seek the numerical solution. The first is defined by simply applying the $L^2$ norm least squares principle, and requires the condition $s \geq 1$. The second is defined with a discrete minus norm, which is related to the inner product in $H^{-1/2}(\Gamma)$. The use of this discrete minus norm results in a method of optimal convergence rates and allows the exact solution has the regularity of any $s > 1/2$. The stability near the interface for both methods is guaranteed by the ghost penalty bilinear forms and we can derive the robust condition number estimates. The convergence rates under $L^2$ norm and the energy norm are derived for both methods. We illustrate the accuracy and the robustness of the proposed methods by a series of numerical experiments for test problems in two and three dimensions.
This paper develops an approximation to the (effective) $p$-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph $p$-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the $p$-Laplacian is that the parameter $p$ induces a controllable bias on cluster structure. The drawback of $p$-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the $p$-resistance induced by the $p$-Laplacian for clustering. For $p$-resistance, small $p$ biases towards clusters with high internal connectivity while large $p$ biases towards clusters of small ``extent,'' that is a preference for smaller shortest-path distances between vertices in the cluster. However, the $p$-resistance is expensive to compute. We overcome this by developing an approximation to the $p$-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of $p$-resistance for clustering. Finally, we provide experiments comparing our approximated $p$-resistance clustering to other $p$-Laplacian based methods.
We study the Electrical Impedance Tomography Bayesian inverse problem for recovering the conductivity given noisy measurements of the voltage on some boundary surface electrodes. The uncertain conductivity depends linearly on a countable number of uniformly distributed random parameters in a compact interval, with the coefficient functions in the linear expansion decaying at an algebraic rate. We analyze the surrogate Markov Chain Monte Carlo (MCMC) approach for sampling the posterior probability measure, where the multivariate sparse adaptive interpolation, with interpolating points chosen according to a lower index set, is used for approximating the forward map. The forward equation is approximated once before running the MCMC for all the realizations, using interpolation on the finite element (FE) approximation at the parametric interpolating points. When evaluation of the solution is needed for a realization, we only need to compute a polynomial, thus cutting drastically the computation time. We contribute a rigorous error estimate for the MCMC convergence. In particular, we show that there is a nested sequence of interpolating lower index sets for which we can derive an interpolation error estimate in terms of the cardinality of these sets, uniformly for all the parameter realizations. An explicit convergence rate for the MCMC sampling of the posterior expectation of the conductivity is rigorously derived, in terms of the interpolating point number, the accuracy of the FE approximation of the forward equation, and the MCMC sample number. We perform numerical experiments using an adaptive greedy approach to construct the sets of interpolation points. We show the benefits of this approach over the simple MCMC where the forward equation is repeatedly solved for all the samples and the non-adaptive surrogate MCMC with an isotropic index set treating all the random parameters equally.
We consider the problem of computing a grevlex Gr\"obner basis for the set $F_r(M)$ of minors of size $r$ of an $n\times n$ matrix $M$ of generic linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal $\langle F_r(M) \rangle$ cannot be generated by a regular sequence. As such, when using the general-purpose algorithm $F_5$ to find the sought Gr\"obner basis, some computing time is wasted on reductions to zero. We use known results about the first syzygy module of $F_r(M)$ to refine the $F_5$ algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In particular, in the case $r=n-2$, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding complexity analysis which improves upon the previously known estimates.
Random graph models are playing an increasingly important role in science and industry, and finds their applications in a variety of fields ranging from social and traffic networks, to recommendation systems and molecular genetics. In this paper, we perform an in-depth analysis of the random Kronecker graph model proposed in \cite{leskovec2010kronecker}, when the number of graph vertices $N$ is large. Built upon recent advances in random matrix theory, we show, in the dense regime, that the random Kronecker graph adjacency matrix follows approximately a signal-plus-noise model, with a small-rank (of order at most $\log N$) signal matrix that is linear in the graph parameters and a random noise matrix having a quarter-circle-form singular value distribution. This observation allows us to propose a ``denoise-and-solve'' meta algorithm to approximately infer the graph parameters, with reduced computational complexity and (asymptotic) performance guarantee. Numerical experiments of graph inference and graph classification on both synthetic and realistic graphs are provided to support the advantageous performance of the proposed approach.
Complete reliance on the fitted model in response surface experiments is risky and relaxing this assumption, whether out of necessity or intentionally, requires an experimenter to account for multiple conflicting objectives. This work provides a methodological framework of a compound optimality criterion comprising elementary criteria responsible for: (i) the quality of the confidence region-based inference to be done using the fitted model (DP-/LP-optimality); (ii) improving the ability to test for the lack-of-fit from specified potential model contamination in the form of extra polynomial terms; and (iii) simultaneous minimisation of the variance and bias of the fitted model parameters arising from this misspecification. The latter two components have been newly developed in accordance with the model-independent 'pure error' approach to the error estimation. The compound criteria and design construction were adapted to restricted randomisation frameworks: blocked and multistratum experiments, where the stratum-by-stratum approach was adopted. A point-exchange algorithm was employed for searching for nearly optimal designs. The theoretical work is accompanied by one real and two illustrative examples to explore the relationship patterns among the individual components and characteristics of the optimal designs, demonstrating the attainable compromises across the competing objectives and driving some general practical recommendations.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by Jeong et al. by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.