亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose and analyze the least squares finite element methods for the linear elasticity interface problem in the stress-displacement system on unfitted meshes. We consider the cases that the interface is $C^2$ or polygonal, and the exact solution $(\sigma,u)$ belongs to $H^s(div; \Omega_0 \cup \Omega_1) \times $H^{1+s}(\Omega_0 \cup \Omega_1)$ with $s > 1/2$. Two types of least squares functionals are defined to seek the numerical solution. The first is defined by simply applying the $L^2$ norm least squares principle, and requires the condition $s \geq 1$. The second is defined with a discrete minus norm, which is related to the inner product in $H^{-1/2}(\Gamma)$. The use of this discrete minus norm results in a method of optimal convergence rates and allows the exact solution has the regularity of any $s > 1/2$. The stability near the interface for both methods is guaranteed by the ghost penalty bilinear forms and we can derive the robust condition number estimates. The convergence rates under $L^2$ norm and the energy norm are derived for both methods. We illustrate the accuracy and the robustness of the proposed methods by a series of numerical experiments for test problems in two and three dimensions.

相關內容

In this paper, we propose a new generic method for detecting the number and locations of structural breaks or change points in piecewise linear models under stationary Gaussian noise. Our method transforms the change point detection problem into identifying local extrema (local maxima and local minima) through kernel smoothing and differentiation of the data sequence. By computing p-values for all local extrema based on peak height distributions of smooth Gaussian processes, we utilize the Benjamini-Hochberg procedure to identify significant local extrema as the detected change points. Our method can distinguish between two types of change points: continuous breaks (Type I) and jumps (Type II). We study three scenarios of piecewise linear signals, namely pure Type I, pure Type II and a mixture of Type I and Type II change points. The results demonstrate that our proposed method ensures asymptotic control of the False Discover Rate (FDR) and power consistency, as sequence length, slope changes, and jump size increase. Furthermore, compared to traditional change point detection methods based on recursive segmentation, our approach only requires a single test for all candidate local extrema, thereby achieving the smallest computational complexity proportionate to the data sequence length. Additionally, numerical studies illustrate that our method maintains FDR control and power consistency, even in non-asymptotic cases when the size of slope changes or jumps is not large. We have implemented our method in the R package "dSTEM" (available from //cran.r-project.org/web/packages/dSTEM).

Considering the shortcomings of the traditional sample covariance matrix estimation, this paper proposes an improved global minimum variance portfolio model and named spectral corrected and regularized global minimum variance portfolio (SCRGMVP), which is better than the traditional risk model. The key of this method is that under the assumption that the population covariance matrix follows the spiked model and the method combines the design idea of the sample spectrally-corrected covariance matrix and regularized. The simulation of real and synthetic data shows that our method is not only better than the performance of traditional sample covariance matrix estimation (SCME), shrinkage estimation (SHRE), weighted shrinkage estimation (WSHRE) and simple spectral correction estimation (SCE), but also has lower computational complexity.

Reconstructing interacting hands from monocular RGB data is a challenging task, as it involves many interfering factors, e.g. self- and mutual occlusion and similar textures. Previous works only leverage information from a single RGB image without modeling their physically plausible relation, which leads to inferior reconstruction results. In this work, we are dedicated to explicitly exploiting spatial-temporal information to achieve better interacting hand reconstruction. On one hand, we leverage temporal context to complement insufficient information provided by the single frame, and design a novel temporal framework with a temporal constraint for interacting hand motion smoothness. On the other hand, we further propose an interpenetration detection module to produce kinetically plausible interacting hands without physical collisions. Extensive experiments are performed to validate the effectiveness of our proposed framework, which achieves new state-of-the-art performance on public benchmarks.

In this work, we study the problem of finding the maximum value of a non-negative submodular function subject to a limit on the number of items selected, a ubiquitous problem that appears in many applications, such as data summarization and nonlinear regression. We provide the first deterministic, linear-time approximation algorithms for this problem that do not assume the objective is monotone. We present three deterministic, linear-time algorithms: a single-pass streaming algorithm with a ratio of $23.313 + \epsilon$, which is the first linear-time streaming algorithm; a simpler deterministic linear-time algorithm with a ratio of $11.657$; and a $(4 + O(\epsilon ))$-approximation algorithm. Finally, we present a deterministic algorithm that obtains ratio of $e + \epsilon$ in $O_{\epsilon}(n \log(n))$ time, close to the best known expected ratio of $e - 0.121$ in polynomial time.

In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.

In this paper, we explore two fundamental first-order algorithms in convex optimization, namely, gradient descent (GD) and proximal gradient method (ProxGD). Our focus is on making these algorithms entirely adaptive by leveraging local curvature information of smooth functions. We propose adaptive versions of GD and ProxGD that are based on observed gradient differences and, thus, have no added computational costs. Moreover, we prove convergence of our methods assuming only local Lipschitzness of the gradient. In addition, the proposed versions allow for even larger stepsizes than those initially suggested in [MM20].

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司