亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Very unhealthy air quality is consistently connected with numerous diseases. Appropriate extreme analysis and accurate predictions are in rising demand for exploring potential linked causes and for providing suggestions for the environmental agency in public policy strategy. This paper aims to model the spatial and temporal pattern of both moderate and very poor PM10 concentrations collected from 342 representative monitors distributed throughout mainland Spain from 2017 to 2021. We firstly propose and compare a series of Bayesian generalized extreme models of annual maxima PM10 concentrations, including both the fixed effect as well as the spatio-temporal random effect with the Stochastic Partial Differential Equation approach and a lag-one dynamic auto-regressive component. The similar and different effects of interrelated factors are identified through a joint Bayesian model of annual mean and annual maxima PM10 concentrations, which may bring the power of statistical inference of body data to the tail analysis with implementation in the faster and more accurate Integrated Nested Laplace Approximation (INLA) algorithm with respect to MCMC. Under WAIC, DIC and other criteria, the best model is selected with good predictive ability based on the first four-year data for training and the last-year data for testing. The findings are applied to identify the hot-spot regions with extremely poor quality using excursion functions specified at the grid level. It suggests that the community of Madrid and the northwestern boundary of Spain are likely to be exposed to severe air pollution simultaneously exceeding the warning risk threshold. The joint model also provides evidence that certain predictors (precipitation, vapour pressure and population density) influence comparably while the other predictors (altitude and temperature) impact oppositely in the different scaled PM10 concentrations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 自動化 · 通用框架 · 語言生成 · 復雜場景 ·
2023 年 3 月 31 日

This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.

Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.

Continuous-time measurements are instrumental for a multitude of tasks in quantum engineering and quantum control, including the estimation of dynamical parameters of open quantum systems monitored through the environment. However, such measurements do not extract the maximum amount of information available in the output state, so finding alternative optimal measurement strategies is a major open problem. In this paper we solve this problem in the setting of discrete-time input-output quantum Markov chains. We present an efficient algorithm for optimal estimation of one-dimensional dynamical parameters which consists of an iterative procedure for updating a `measurement filter' operator and determining successive measurement bases for the output units. A key ingredient of the scheme is the use of a coherent quantum absorber as a way to post-process the output after the interaction with the system. This is designed adaptively such that the joint system and absorber stationary state is pure at a reference parameter value. The scheme offers an exciting prospect for optimal continuous-time adaptive measurements, but more work is needed to find realistic practical implementations.

Sparse graphical modelling has attained widespread attention across various academic fields. We propose two new graphical model approaches, Gslope and Tslope, which provide sparse estimates of the precision matrix by penalizing its sorted L1-norm, and relying on Gaussian and T-student data, respectively. We provide the selections of the tuning parameters which provably control the probability of including false edges between the disjoint graph components and empirically control the False Discovery Rate for the block diagonal covariance matrices. In extensive simulation and real world analysis, the new methods are compared to other state-of-the-art sparse graphical modelling approaches. The results establish Gslope and Tslope as two new effective tools for sparse network estimation, when dealing with both Gaussian, t-student and mixture data.

Large language models have demonstrated surprising ability to perform in-context learning, i.e., these models can be directly applied to solve numerous downstream tasks by conditioning on a prompt constructed by a few input-output examples. However, prior research has shown that in-context learning can suffer from high instability due to variations in training examples, example order, and prompt formats. Therefore, the construction of an appropriate prompt is essential for improving the performance of in-context learning. In this paper, we revisit this problem from the view of predictive bias. Specifically, we introduce a metric to evaluate the predictive bias of a fixed prompt against labels or a given attributes. Then we empirically show that prompts with higher bias always lead to unsatisfactory predictive quality. Based on this observation, we propose a novel search strategy based on the greedy search to identify the near-optimal prompt for improving the performance of in-context learning. We perform comprehensive experiments with state-of-the-art mainstream models such as GPT-3 on various downstream tasks. Our results indicate that our method can enhance the model's in-context learning performance in an effective and interpretable manner.

To realize reliable quantum software, techniques to automatically ensure the quantum software's correctness have recently been investigated. However, they primarily focus on fixed quantum circuits rather than the procedure of building quantum circuits. Despite being a common approach, the correctness of building circuits using different parameters following the same procedure is not guaranteed. To this end, we propose a design-by-contract framework for quantum software. Our framework provides a python-embedded language to write assertions on the input and output states of all quantum circuits built by certain procedures. Additionally, it provides a method to write assertions about the statistical processing of measurement results to ensure the procedure's correctness for obtaining the final result. These assertions are automatically checked using a quantum computer simulator. For evaluation, we implemented our framework and wrote assertions for some widely used quantum algorithms. Consequently, we found that our framework has sufficient expressive power to verify the whole procedure of quantum software.

Existing conversational models are handled by a database(DB) and API based systems. However, very often users' questions require information that cannot be handled by such systems. Nonetheless, answers to these questions are available in the form of customer reviews and FAQs. DSTC-11 proposes a three stage pipeline consisting of knowledge seeking turn detection, knowledge selection and response generation to create a conversational model grounded on this subjective knowledge. In this paper, we focus on improving the knowledge selection module to enhance the overall system performance. In particular, we propose entity retrieval methods which result in an accurate and faster knowledge search. Our proposed Named Entity Recognition (NER) based entity retrieval method results in 7X faster search compared to the baseline model. Additionally, we also explore a potential keyword extraction method which can improve the accuracy of knowledge selection. Preliminary results show a 4 \% improvement in exact match score on knowledge selection task. The code is available //github.com/raja-kumar/knowledge-grounded-TODS

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司