亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents a maturity model for assessing catalogues of semantic artefacts, one of the keystones that permit semantic interoperability of systems. We defined the dimensions and related features to include in the maturity model by analysing the current literature and existing catalogues of semantic artefacts provided by experts. In addition, we assessed 26 different catalogues to demonstrate the effectiveness of the maturity model, which includes 12 different dimensions (Metadata, Openness, Quality, Availability, Statistics, PID, Governance, Community, Sustainability, Technology, Transparency, and Assessment) and 43 related features (or sub-criteria) associated with these dimensions. Such a maturity model is one of the first attempts to provide recommendations for governance and processes for preserving and maintaining semantic artefacts and helps assess/address interoperability challenges.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neural Networks · 泛函 · Sigmoid(一種激活函數) · 激活函數 ·
2024 年 5 月 6 日

In this article, we consider designs of simple analog artificial neural networks based on adiabatic Josephson cells with a sigmoid activation function. A new approach based on the gradient descent method is developed to adjust the circuit parameters, allowing efficient signal transmission between the network layers. The proposed solution is demonstrated on the example of the system implementing XOR and OR logical operations.

We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.

We propose an algorithm to construct optimal exact designs (EDs). Most of the work in the optimal regression design literature focuses on the approximate design (AD) paradigm due to its desired properties, including the optimality verification conditions derived by Kiefer (1959, 1974). ADs may have unbalanced weights, and practitioners may have difficulty implementing them with a designated run size $n$. Some EDs are constructed using rounding methods to get an integer number of runs at each support point of an AD, but this approach may not yield optimal results. To construct EDs, one may need to perform new combinatorial constructions for each $n$, and there is no unified approach to construct them. Therefore, we develop a systematic way to construct EDs for any given $n$. Our method can transform ADs into EDs while retaining high statistical efficiency in two steps. The first step involves constructing an AD by utilizing the convex nature of many design criteria. The second step employs a simulated annealing algorithm to search for the ED stochastically. Through several applications, we demonstrate the utility of our method for various design problems. Additionally, we show that the design efficiency approaches unity as the number of design points increases.

Distillation is the task of replacing a complicated machine learning model with a simpler model that approximates the original [BCNM06,HVD15]. Despite many practical applications, basic questions about the extent to which models can be distilled, and the runtime and amount of data needed to distill, remain largely open. To study these questions, we initiate a general theory of distillation, defining PAC-distillation in an analogous way to PAC-learning [Val84]. As applications of this theory: (1) we propose new algorithms to extract the knowledge stored in the trained weights of neural networks -- we show how to efficiently distill neural networks into succinct, explicit decision tree representations when possible by using the ``linear representation hypothesis''; and (2) we prove that distillation can be much cheaper than learning from scratch, and make progress on characterizing its complexity.

Electromagnetic (EM) body models designed to predict Radio-Frequency (RF) propagation are time-consuming methods which prevent their adoption in strict real-time computational imaging problems, such as human body localization and sensing. Physics-informed Generative Neural Network (GNN) models have been recently proposed to reproduce EM effects, namely to simulate or reconstruct missing data or samples by incorporating relevant EM principles and constraints. The paper discusses a Variational Auto-Encoder (VAE) model which is trained to reproduce the effects of human motions on the EM field and incorporate EM body diffraction principles. Proposed physics-informed generative neural network models are verified against both classical diffraction-based EM tools and full-wave EM body simulations.

The cosinor model is frequently used to represent gene expression given the 24 hour day-night cycle time at which a corresponding tissue sample is collected. However, the timing of many biological processes are based on individual-specific internal timing systems that are offset relative to day-night cycle time. When these offsets are unknown, they pose a challenge in performing statistical analyses with a cosinor model. To clarify, when sample collection times are mis-recorded, cosinor regression can yield attenuated parameter estimates, which would also attenuate test statistics. This attenuation bias would inflate type II error rates in identifying genes with oscillatory behavior. This paper proposes a heuristic method to account for unknown offsets when tissue samples are collected in a longitudinal design. Specifically, this method involves first estimating individual-specific cosinor models for each gene. The times of sample collection for that individual are then translated based on the estimated phase-shifts across every gene. Simulation studies confirm that this method mitigates bias in estimation and inference. Illustrations with real data from three circadian biology studies highlight that this method produces parameter estimates and inferences akin to those obtained when each individual's offset is known.

Most of the existing diffusion models use Gaussian noise for training and sampling across all time steps, which may not optimally account for the frequency contents reconstructed by the denoising network. Despite the diverse applications of correlated noise in computer graphics, its potential for improving the training process has been underexplored. In this paper, we introduce a novel and general class of diffusion models taking correlated noise within and across images into account. More specifically, we propose a time-varying noise model to incorporate correlated noise into the training process, as well as a method for fast generation of correlated noise mask. Our model is built upon deterministic diffusion models and utilizes blue noise to help improve the generation quality compared to using Gaussian white (random) noise only. Further, our framework allows introducing correlation across images within a single mini-batch to improve gradient flow. We perform both qualitative and quantitative evaluations on a variety of datasets using our method, achieving improvements on different tasks over existing deterministic diffusion models in terms of FID metric.

With the recent success of generative models in image and text, the evaluation of generative models has gained a lot of attention. Whereas most generative models are compared in terms of scalar values such as Frechet Inception Distance (FID) or Inception Score (IS), in the last years (Sajjadi et al., 2018) proposed a definition of precision-recall curve to characterize the closeness of two distributions. Since then, various approaches to precision and recall have seen the light (Kynkaanniemi et al., 2019; Naeem et al., 2020; Park & Kim, 2023). They center their attention on the extreme values of precision and recall, but apart from this fact, their ties are elusive. In this paper, we unify most of these approaches under the same umbrella, relying on the work of (Simon et al., 2019). Doing so, we were able not only to recover entire curves, but also to expose the sources of the accounted pitfalls of the concerned metrics. We also provide consistency results that go well beyond the ones presented in the corresponding literature. Last, we study the different behaviors of the curves obtained experimentally.

We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN, built on top of the probabilistic model checker PRISM. This new version extends MULTIGAIN's multi-objective capabilities, by allowing for the formal verification and synthesis of controllers for probabilistic systems with multi-dimensional long-run average reward structures, steady-state constraints, and linear temporal logic properties. Additionally, MULTIGAIN 2.0 can modify the underlying linear program to prevent unbounded-memory and other unintuitive solutions and visualizes Pareto curves, in the two- and three-dimensional cases, to facilitate trade-off analysis in multi-objective scenarios.

While neural networks can be approximated by linear models as their width increases, certain properties of wide neural networks cannot be captured by linear models. In this work we show that recently proposed Neural Quadratic Models can exhibit the "catapult phase" [Lewkowycz et al. 2020] that arises when training such models with large learning rates. We then empirically show that the behaviour of neural quadratic models parallels that of neural networks in generalization, especially in the catapult phase regime. Our analysis further demonstrates that quadratic models can be an effective tool for analysis of neural networks.

北京阿比特科技有限公司