Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, \textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.
In this paper, we introduce a novel fine-tuning technique for language models, which involves incorporating symmetric noise into the embedding process. This method aims to enhance the model's function by more stringently regulating its local curvature, demonstrating superior performance over the current method, NEFTune. When fine-tuning the LLaMA-2-7B model using Alpaca, standard techniques yield a 29.79% score on AlpacaEval. However, our approach, SymNoise, increases this score significantly to 69.04%, using symmetric noisy embeddings. This is a 6.7% improvement over the state-of-the-art method, NEFTune~(64.69%). Furthermore, when tested on various models and stronger baseline instruction datasets, such as Evol-Instruct, ShareGPT, OpenPlatypus, SymNoise consistently outperforms NEFTune. The current literature, including NEFTune, has underscored the importance of more in-depth research into the application of noise-based strategies in the fine-tuning of language models. Our approach, SymNoise, is another significant step towards this direction, showing notable improvement over the existing state-of-the-art method.
In this paper, we present ECSIC, a novel learned method for stereo image compression. Our proposed method compresses the left and right images in a joint manner by exploiting the mutual information between the images of the stereo image pair using a novel stereo cross attention (SCA) module and two stereo context modules. The SCA module performs cross-attention restricted to the corresponding epipolar lines of the two images and processes them in parallel. The stereo context modules improve the entropy estimation of the second encoded image by using the first image as a context. We conduct an extensive ablation study demonstrating the effectiveness of the proposed modules and a comprehensive quantitative and qualitative comparison with existing methods. ECSIC achieves state-of-the-art performance in stereo image compression on the two popular stereo image datasets Cityscapes and InStereo2k while allowing for fast encoding and decoding.
This paper presents SCALER, a versatile free-climbing multi-limbed robot that is designed to achieve tightly coupled simultaneous locomotion and dexterous grasping. Although existing quadruped-limbed robots have shown impressive dexterous skills such as object manipulation, it is essential to balance power-intensive locomotion and dexterous grasping capabilities. We design a torso linkage and a parallel-serial limb to meet such conflicting skills that pose unique challenges in the hardware designs. SCALER employs underactuated two-fingered GOAT grippers that can mechanically adapt and offer 7 modes of grasping, enabling SCALER to traverse extreme terrains with multi-modal grasping strategies. We study the whole-body approach, where SCALER uses its body and limbs to generate additional forces for stable grasping with environments, further enhancing versatility. Furthermore, we improve the GOAT gripper actuation speed to realize more dynamic climbing in a closed-loop control fashion. With these proposed technologies, SCALER can traverse vertical, overhang, upside-down, slippery terrains, and bouldering walls with non-convex-shaped climbing holds under the Earth's gravity.
User-generated replies to hate speech are promising means to combat hatred, but questions about whether they can stop incivility in follow-up conversations linger. We argue that effective replies stop incivility from emerging in follow-up conversations - replies that elicit more incivility are counterproductive. This study introduces the task of predicting the incivility of conversations following replies to hate speech. We first propose a metric to measure conversation incivility based on the number of civil and uncivil comments as well as the unique authors involved in the discourse. Our metric approximates human judgments more accurately than previous metrics. We then use the metric to evaluate the outcomes of replies to hate speech. A linguistic analysis uncovers the differences in the language of replies that elicit follow-up conversations with high and low incivility. Experimental results show that forecasting incivility is challenging. We close with a qualitative analysis shedding light into the most common errors made by the best model.
In the era of artificial intelligence, data is gold but costly to annotate. The paper demonstrates a groundbreaking solution to this dilemma using ChatGPT for text augmentation in sentiment analysis. We leverage ChatGPT's generative capabilities to create synthetic training data that significantly improves the performance of smaller models, making them competitive with, or even outperforming, their larger counterparts. This innovation enables models to be both efficient and effective, thereby reducing computational cost, inference time, and memory usage without compromising on quality. Our work marks a key advancement in the cost-effective development and deployment of robust sentiment analysis models.
Reflectance bounds the frequency spectrum of illumination in the object appearance. In this paper, we introduce the first stochastic inverse rendering method, which recovers the full frequency spectrum of an illumination jointly with the object reflectance from a single image. Our key idea is to solve this blind inverse problem in the reflectance map, an appearance representation invariant to the underlying geometry, by learning to reverse the image formation with a novel diffusion model which we refer to as the Diffusion Reflectance Map Network (DRMNet). Given an observed reflectance map converted and completed from the single input image, DRMNet generates a reflectance map corresponding to a perfect mirror sphere while jointly estimating the reflectance. The forward process can be understood as gradually filtering a natural illumination with lower and lower frequency reflectance and additive Gaussian noise. DRMNet learns to invert this process with two subnetworks, IllNet and RefNet, which work in concert towards this joint estimation. The network is trained on an extensive synthetic dataset and is demonstrated to generalize to real images, showing state-of-the-art accuracy on established datasets.
Human intelligence and human consciousness emerge gradually during the process of cognitive development. Understanding this development is an essential aspect of understanding the human mind and may facilitate the construction of artificial minds with similar properties. Importantly, human cognitive development relies on embodied interactions with the physical and social environment, which is perceived via complementary sensory modalities. These interactions allow the developing mind to probe the causal structure of the world. This is in stark contrast to common machine learning approaches, e.g., for large language models, which are merely passively ``digesting'' large amounts of training data, but are not in control of their sensory inputs. However, computational modeling of the kind of self-determined embodied interactions that lead to human intelligence and consciousness is a formidable challenge. Here we present MIMo, an open-source multi-modal infant model for studying early cognitive development through computer simulations. MIMo's body is modeled after an 18-month-old child with detailed five-fingered hands. MIMo perceives its surroundings via binocular vision, a vestibular system, proprioception, and touch perception through a full-body virtual skin, while two different actuation models allow control of his body. We describe the design and interfaces of MIMo and provide examples illustrating its use. All code is available at //github.com/trieschlab/MIMo .
In real life, various degradation scenarios exist that might damage document images, making it harder to recognize and analyze them, thus binarization is a fundamental and crucial step for achieving the most optimal performance in any document analysis task. We propose DocBinFormer (Document Binarization Transformer), a novel two-level vision transformer (TL-ViT) architecture based on vision transformers for effective document image binarization. The presented architecture employs a two-level transformer encoder to effectively capture both global and local feature representation from the input images. These complimentary bi-level features are exploited for efficient document image binarization, resulting in improved results for system-generated as well as handwritten document images in a comprehensive approach. With the absence of convolutional layers, the transformer encoder uses the pixel patches and sub-patches along with their positional information to operate directly on them, while the decoder generates a clean (binarized) output image from the latent representation of the patches. Instead of using a simple vision transformer block to extract information from the image patches, the proposed architecture uses two transformer blocks for greater coverage of the extracted feature space on a global and local scale. The encoded feature representation is used by the decoder block to generate the corresponding binarized output. Extensive experiments on a variety of DIBCO and H-DIBCO benchmarks show that the proposed model outperforms state-of-the-art techniques on four metrics. The source code will be made available at //github.com/RisabBiswas/DocBinFormer.
In this paper, we introduce a novel algorithm - the Skill-Driven Skill Recombination Algorithm (SDSRA) - an innovative framework that significantly enhances the efficiency of achieving maximum entropy in reinforcement learning tasks. We find that SDSRA achieves faster convergence compared to the traditional Soft Actor-Critic (SAC) algorithm and produces improved policies. By integrating skill-based strategies within the robust Actor-Critic framework, SDSRA demonstrates remarkable adaptability and performance across a wide array of complex and diverse benchmarks.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.