Scientific Machine Learning (SciML) is a burgeoning field that synergistically combines domain-aware and interpretable models with agnostic machine learning techniques. In this work, we introduce GOKU-UI, an evolution of the SciML generative model GOKU-nets. GOKU-UI not only broadens the original model's spectrum to incorporate other classes of differential equations, such as Stochastic Differential Equations (SDEs), but also integrates attention mechanisms and a novel multiple shooting training strategy in the latent space. These modifications have led to a significant increase in its performance in both reconstruction and forecast tasks, as demonstrated by our evaluation of simulated and empirical data. Specifically, GOKU-UI outperformed all baseline models on synthetic datasets even with a training set 16-fold smaller, underscoring its remarkable data efficiency. Furthermore, when applied to empirical human brain data, while incorporating stochastic Stuart-Landau oscillators into its dynamical core, our proposed enhancements markedly increased the model's effectiveness in capturing complex brain dynamics. This augmented version not only surpassed all baseline methods in the reconstruction task, but also demonstrated lower prediction error of future brain activity up to 15 seconds ahead. By training GOKU-UI on resting state fMRI data, we encoded whole-brain dynamics into a latent representation, learning a low-dimensional dynamical system model that could offer insights into brain functionality and open avenues for practical applications such as the classification of mental states or psychiatric conditions. Ultimately, our research provides further impetus for the field of Scientific Machine Learning, showcasing the potential for advancements when established scientific insights are interwoven with modern machine learning.
The Rasch model is one of the most fundamental models in \emph{item response theory} and has wide-ranging applications from education testing to recommendation systems. In a universe with $n$ users and $m$ items, the Rasch model assumes that the binary response $X_{li} \in \{0,1\}$ of a user $l$ with parameter $\theta^*_l$ to an item $i$ with parameter $\beta^*_i$ (e.g., a user likes a movie, a student correctly solves a problem) is distributed as $\Pr(X_{li}=1) = 1/(1 + \exp{-(\theta^*_l - \beta^*_i)})$. In this paper, we propose a \emph{new item estimation} algorithm for this celebrated model (i.e., to estimate $\beta^*$). The core of our algorithm is the computation of the stationary distribution of a Markov chain defined on an item-item graph. We complement our algorithmic contributions with finite-sample error guarantees, the first of their kind in the literature, showing that our algorithm is consistent and enjoys favorable optimality properties. We discuss practical modifications to accelerate and robustify the algorithm that practitioners can adopt. Experiments on synthetic and real-life datasets, ranging from small education testing datasets to large recommendation systems datasets show that our algorithm is scalable, accurate, and competitive with the most commonly used methods in the literature.
For some hypothesis classes and input distributions, active agnostic learning needs exponentially fewer samples than passive learning; for other classes and distributions, it offers little to no improvement. The most popular algorithms for agnostic active learning express their performance in terms of a parameter called the disagreement coefficient, but it is known that these algorithms are inefficient on some inputs. We take a different approach to agnostic active learning, getting an algorithm that is competitive with the optimal algorithm for any binary hypothesis class $H$ and distribution $D_X$ over $X$. In particular, if any algorithm can use $m^*$ queries to get $O(\eta)$ error, then our algorithm uses $O(m^* \log |H|)$ queries to get $O(\eta)$ error. Our algorithm lies in the vein of the splitting-based approach of Dasgupta [2004], which gets a similar result for the realizable ($\eta = 0$) setting. We also show that it is NP-hard to do better than our algorithm's $O(\log |H|)$ overhead in general.
We consider the massively parallel computation (MPC) model, which is a theoretical abstraction of large-scale parallel processing models such as MapReduce. In this model, assuming the widely believed 1-vs-2-cycles conjecture, solving many basic graph problems in $O(1)$ rounds with a strongly sublinear memory size per machine is impossible. We improve on the recent work of Holm and T\v{e}tek [SODA 2023] that bypass this barrier for problems when a planar embedding of the graph is given. In the previous work, on graphs of size $n$ with $O(n/\mathcal{S})$ machines, the memory size per machine needs to be at least $\mathcal{S} = n^{2/3+\Omega(1)}$, whereas we extend their work to the fully scalable regime, where the memory size per machine can be $\mathcal{S} = n^{\delta}$ for any constant $0< \delta < 1$. We give the first constant round fully scalable algorithms for embedded planar graphs for the problems of (i) connectivity and (ii) minimum spanning tree (MST). Moreover, we show that the $\varepsilon$-emulator of Chang, Krauthgamer, and Tan [STOC 2022] can be incorporated into our recursive framework to obtain constant-round $(1+\varepsilon)$-approximation algorithms for the problems of computing (iii) single source shortest path (SSSP), (iv) global min-cut, and (v) $st$-max flow. All previous results on cuts and flows required linear memory in the MPC model. Furthermore, our results give new algorithms for problems that implicitly involve embedded planar graphs. We give as corollaries constant round fully scalable algorithms for (vi) 2D Euclidean MST using $O(n)$ total memory and (vii) $(1+\varepsilon)$-approximate weighted edit distance using $\widetilde{O}(n^{2-\delta})$ memory. Our main technique is a recursive framework combined with novel graph drawing algorithms to compute smaller embedded planar graphs in constant rounds in the fully scalable setting.
A Bayesian pseudocoreset is a compact synthetic dataset summarizing essential information of a large-scale dataset and thus can be used as a proxy dataset for scalable Bayesian inference. Typically, a Bayesian pseudocoreset is constructed by minimizing a divergence measure between the posterior conditioning on the pseudocoreset and the posterior conditioning on the full dataset. However, evaluating the divergence can be challenging, particularly for the models like deep neural networks having high-dimensional parameters. In this paper, we propose a novel Bayesian pseudocoreset construction method that operates on a function space. Unlike previous methods, which construct and match the coreset and full data posteriors in the space of model parameters (weights), our method constructs variational approximations to the coreset posterior on a function space and matches it to the full data posterior in the function space. By working directly on the function space, our method could bypass several challenges that may arise when working on a weight space, including limited scalability and multi-modality issue. Through various experiments, we demonstrate that the Bayesian pseudocoresets constructed from our method enjoys enhanced uncertainty quantification and better robustness across various model architectures.
Functional magnetic resonance imaging or functional MRI (fMRI) is a very popular tool used for differing brain regions by measuring brain activity. It is affected by physiological noise, such as head and brain movement in the scanner from breathing, heart beats, or the subject fidgeting. The purpose of this paper is to propose a novel approach to handling fMRI data for infants with high volatility caused by sudden head movements. Another purpose is to evaluate the volatility modelling performance of multiple dependent fMRI time series data. The models examined in this paper are AR and GARCH and the modelling performance is evaluated by several statistical performance measures. The conclusions of this paper are that multiple dependent fMRI series data can be fitted with AR + GARCH model if the multiple fMRI data have many sudden head movements. The GARCH model can capture the shared volatility clustering caused by head movements across brain regions. However, the multiple fMRI data without many head movements have fitted AR + GARCH model with different performance. The conclusions are supported by statistical tests and measures. This paper highlights the difference between the proposed approach from traditional approaches when estimating model parameters and modelling conditional variances on multiple dependent time series. In the future, the proposed approach can be applied to other research fields, such as financial economics, and signal processing. Code is available at \url{//github.com/13204942/STAT40710}.
Table Detection (TD) is a fundamental task to enable visually rich document understanding, which requires the model to extract information without information loss. However, popular Intersection over Union (IoU) based evaluation metrics and IoU-based loss functions for the detection models cannot directly represent the degree of information loss for the prediction results. Therefore, we propose to decouple IoU into a ground truth coverage term and a prediction coverage term, in which the former can be used to measure the information loss of the prediction results. Besides, considering the sparse distribution of tables in document images, we use SparseR-CNN as the base model and further improve the model by using Gaussian Noise Augmented Image Size region proposals and many-to-one label assignments. Results under comprehensive experiments show that the proposed method can consistently outperform state-of-the-art methods with different IoU-based metrics under various datasets and demonstrate that the proposed decoupled IoU loss can enable the model to alleviate information loss.
Computational simulation is increasingly relied upon for high-consequence engineering decisions, and a foundational element to solid mechanics simulations, such as finite element analysis (FEA), is a credible constitutive or material model. Calibration of these complex models is an essential step; however, the selection, calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure (Interlaced Characterization and Calibration (ICC)) is introduced. This framework leverages Bayesian optimal experimental design (BOED) to select the optimal load path for a cruciform specimen in order to collect the most informative data for model calibration. The critical first piece of algorithm development is to demonstrate the active experimental design for a fast model with simulated data. For this demonstration, a material point simulator that models a plane stress elastoplastic material subject to bi-axial loading was chosen. The ICC framework is demonstrated on two exemplar problems in which BOED is used to determine which load step to take, e.g., in which direction to increment the strain, at each iteration of the characterization and calibration cycle. Calibration results from data obtained by adaptively selecting the load path within the ICC algorithm are compared to results from data generated under two naive static load paths that were chosen a priori based on human intuition. In these exemplar problems, data generated in an adaptive setting resulted in calibrated model parameters with reduced measures of uncertainty compared to the static settings.
Neural additive models (NAMs) can improve the interpretability of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we enhance them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) enabling a ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
The stochastic block model (SBM) is a random graph model with different group of vertices connecting differently. It is widely employed as a canonical model to study clustering and community detection, and provides a fertile ground to study the information-theoretic and computational tradeoffs that arise in combinatorial statistics and more generally data science. This monograph surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational tradeoffs, and for various recovery requirements such as exact, partial and weak recovery. The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal SNR-mutual information tradeoff for partial recovery, and the gap between information-theoretic and computational thresholds. The monograph gives a principled derivation of the main algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, (linearized) belief propagation, classical/nonbacktracking spectral methods and graph powering. Extensions to other block models, such as geometric block models, and a few open problems are also discussed.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.