亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new generalizable NeRF method that is able to directly generalize to new unseen scenarios and perform novel view synthesis with as few as two source views. The key to our approach lies in the explicitly modeled correspondence matching information, so as to provide the geometry prior to the prediction of NeRF color and density for volume rendering. The explicit correspondence matching is quantified with the cosine similarity between image features sampled at the 2D projections of a 3D point on different views, which is able to provide reliable cues about the surface geometry. Unlike previous methods where image features are extracted independently for each view, we consider modeling the cross-view interactions via Transformer cross-attention, which greatly improves the feature matching quality. Our method achieves state-of-the-art results on different evaluation settings, with the experiments showing a strong correlation between our learned cosine feature similarity and volume density, demonstrating the effectiveness and superiority of our proposed method. Code is at //github.com/donydchen/matchnerf

相關內容

The quality of three-dimensional reconstruction is a key factor affecting the effectiveness of its application in areas such as virtual reality (VR) and augmented reality (AR) technologies. Neural Radiance Fields (NeRF) can generate realistic images from any viewpoint. It simultaneously reconstructs the shape, lighting, and materials of objects, and without surface defects, which breaks down the barrier between virtuality and reality. The potential spatial correspondences displayed by NeRF between reconstructed scenes and real-world scenes offer a wide range of practical applications possibilities. Despite significant progress in 3D reconstruction since NeRF were introduced, there remains considerable room for exploration and experimentation. NeRF-based models are susceptible to interference issues caused by colored "fog" noise. Additionally, they frequently encounter instabilities and failures while attempting to reconstruct unbounded scenes. Moreover, the model takes a significant amount of time to converge, making it even more challenging to use in such scenarios. Our approach, coined Enhance-NeRF, which adopts joint color to balance low and high reflectivity objects display, utilizes a decoding architecture with prior knowledge to improve recognition, and employs multi-layer performance evaluation mechanisms to enhance learning capacity. It achieves reconstruction of outdoor scenes within one hour under single-card condition. Based on experimental results, Enhance-NeRF partially enhances fitness capability and provides some support to outdoor scene reconstruction. The Enhance-NeRF method can be used as a plug-and-play component, making it easy to integrate with other NeRF-based models. The code is available at: //github.com/TANQIanQ/Enhance-NeRF

Whole slide image (WSI) refers to a type of high-resolution scanned tissue image, which is extensively employed in computer-assisted diagnosis (CAD). The extremely high resolution and limited availability of region-level annotations make it challenging to employ deep learning methods for WSI-based digital diagnosis. Multiple instance learning (MIL) is a powerful tool to address the weak annotation problem, while Transformer has shown great success in the field of visual tasks. The combination of both should provide new insights for deep learning based image diagnosis. However, due to the limitations of single-level MIL and the attention mechanism's constraints on sequence length, directly applying Transformer to WSI-based MIL tasks is not practical. To tackle this issue, we propose a Multi-level MIL with Transformer (MMIL-Transformer) approach. By introducing a hierarchical structure to MIL, this approach enables efficient handling of MIL tasks that involve a large number of instances. To validate its effectiveness, we conducted a set of experiments on WSIs classification task, where MMIL-Transformer demonstrate superior performance compared to existing state-of-the-art methods. Our proposed approach achieves test AUC 94.74% and test accuracy 93.41% on CAMELYON16 dataset, test AUC 99.04% and test accuracy 94.37% on TCGA-NSCLC dataset, respectively. All code and pre-trained models are available at: //github.com/hustvl/MMIL-Transformer

Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Following the above matching pattern, we decompose the sentence-level similarity score into entity and context matching scores. Due to the lack of explicit annotations of the redundant components, we design a feature distillation module to adaptively identify the relation-irrelevant features and reduce their negative impact on context matching. Experimental results show that our method achieves higher matching $F_1$ score and has an inference speed 10 times faster, when compared with the state-of-the-art methods.

Large language models (LLMs) can acquire strong code-generation capabilities through few-shot learning. In contrast, supervised fine-tuning is still needed for smaller models to achieve good performance. Such fine-tuning demands a large number of task-specific NL-code pairs, which are expensive to obtain. In this paper, we attempt to transfer the code generation ability of an LLM to a smaller model with the aid of weakly-supervised data. More specifically, we propose explicit knowledge transfer (EKT), which uses the few-shot capabilities of a teacher LLM to create NL-code pairs that we then filter for correctness and fine-tune the student on. We evaluate EKT on the task of generating code solutions to math word problems from the GSM8k dataset. We find that EKT not only yields better performance than training with expert iteration, but also outperforms knowledge distillation, another form of knowledge transfer. A GPT-Neo 1.3B model trained using EKT with a GPT-J teacher achieves a 12.4% pass@100 on GSM8k, while the same student and teacher trained with knowledge distillation yield only a 3.7% pass@100. We also show that it is possible for a student model to outperform the teacher using EKT.

In this paper, we present a simple but performant semi-supervised semantic segmentation approach, termed CorrMatch. Our goal is to mine more high-quality regions from the unlabeled images to leverage the unlabeled data more efficiently via consistency regularization. The key contributions of our CorrMatch are two novel and complementary strategies. First, we introduce an adaptive threshold updating strategy with a relaxed initialization to expand the high-quality regions. Furthermore, we propose to propagate high-confidence predictions through measuring the pairwise similarities between pixels. Despite its simplicity, we show that CorrMatch achieves great performance on popular semi-supervised semantic segmentation benchmarks. Taking the DeepLabV3+ framework with ResNet-101 backbone as our segmentation model, we receive a 76%+ mIoU score on the Pascal VOC 2012 segmentation benchmark with only 92 annotated images provided. We also achieve a consistent improvement over previous semi-supervised semantic segmentation models. Code will be made publicly available.

We introduce Probabilistic Coordinate Fields (PCFs), a novel geometric-invariant coordinate representation for image correspondence problems. In contrast to standard Cartesian coordinates, PCFs encode coordinates in correspondence-specific barycentric coordinate systems (BCS) with affine invariance. To know \textit{when and where to trust} the encoded coordinates, we implement PCFs in a probabilistic network termed PCF-Net, which parameterizes the distribution of coordinate fields as Gaussian mixture models. By jointly optimizing coordinate fields and their confidence conditioned on dense flows, PCF-Net can work with various feature descriptors when quantifying the reliability of PCFs by confidence maps. An interesting observation of this work is that the learned confidence map converges to geometrically coherent and semantically consistent regions, which facilitates robust coordinate representation. By delivering the confident coordinates to keypoint/feature descriptors, we show that PCF-Net can be used as a plug-in to existing correspondence-dependent approaches. Extensive experiments on both indoor and outdoor datasets suggest that accurate geometric invariant coordinates help to achieve the state of the art in several correspondence problems, such as sparse feature matching, dense image registration, camera pose estimation, and consistency filtering. Further, the interpretable confidence map predicted by PCF-Net can also be leveraged to other novel applications from texture transfer to multi-homography classification.

Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries, and cannot generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Computation Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query computation tree. In particular, QTO utilizes the independence encoded in the query computation tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy. The code of our paper is at //github.com/bys0318/QTO.

Domain generalization (DG) for person re-identification (ReID) is a challenging problem, as access to target domain data is not permitted during the training process. Most existing DG ReID methods update the feature extractor and classifier parameters based on the same features. This common practice causes the model to overfit to existing feature styles in the source domain, resulting in sub-optimal generalization ability on target domains. To solve this problem, we propose a novel style interleaved learning (IL) framework. Unlike conventional learning strategies, IL incorporates two forward propagations and one backward propagation for each iteration. We employ the features of interleaved styles to update the feature extractor and classifiers using different forward propagations, which helps to prevent the model from overfitting to certain domain styles. To generate interleaved feature styles, we further propose a new feature stylization approach. It produces a wide range of meaningful styles that are both different and independent from the original styles in the source domain, which caters to the IL methodology. Extensive experimental results show that our model not only consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID, but also has clear advantages in computational efficiency. The code is available at //github.com/WentaoTan/Interleaved-Learning.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司