We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.
Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, given that learned value functions can also generalize, it is not immediately obvious why model generalization should be better. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a simple theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.
We study structured multi-armed bandits, which is the problem of online decision-making under uncertainty in the presence of structural information. In this problem, the decision-maker needs to discover the best course of action despite observing only uncertain rewards over time. The decision-maker is aware of certain convex structural information regarding the reward distributions; that is, the decision-maker knows the reward distributions of the arms belong to a convex compact set. In the presence such structural information, they then would like to minimize their regret by exploiting this information, where the regret is its performance difference against a benchmark policy that knows the best action ahead of time. In the absence of structural information, the classical upper confidence bound (UCB) and Thomson sampling algorithms are well known to suffer minimal regret. As recently pointed out, neither algorithms are, however, capable of exploiting structural information that is commonly available in practice. We propose a novel learning algorithm that we call "DUSA" whose regret matches the information-theoretic regret lower bound up to a constant factor and can handle a wide range of structural information. Our algorithm DUSA solves a dual counterpart of the regret lower bound at the empirical reward distribution and follows its suggested play. We show that this idea leads to the first computationally viable learning policy with asymptotic minimal regret for various structural information, including well-known structured bandits such as linear, Lipschitz, and convex bandits, and novel structured bandits that have not been studied in the literature due to the lack of a unified and flexible framework.
Providing generalization guarantees for modern neural networks has been a crucial task in statistical learning. Recently, several studies have attempted to analyze the generalization error in such settings by using tools from fractal geometry. While these works have successfully introduced new mathematical tools to apprehend generalization, they heavily rely on a Lipschitz continuity assumption, which in general does not hold for neural networks and might make the bounds vacuous. In this work, we address this issue and prove fractal geometry-based generalization bounds without requiring any Lipschitz assumption. To achieve this goal, we build up on a classical covering argument in learning theory and introduce a data-dependent fractal dimension. Despite introducing a significant amount of technical complications, this new notion lets us control the generalization error (over either fixed or random hypothesis spaces) along with certain mutual information (MI) terms. To provide a clearer interpretation to the newly introduced MI terms, as a next step, we introduce a notion of "geometric stability" and link our bounds to the prior art. Finally, we make a rigorous connection between the proposed data-dependent dimension and topological data analysis tools, which then enables us to compute the dimension in a numerically efficient way. We support our theory with experiments conducted on various settings.
While ERM suffices to attain near-optimal generalization error in the stochastic learning setting, this is not known to be the case in the online learning setting, where algorithms for general concept classes rely on computationally inefficient oracles such as the Standard Optimal Algorithm (SOA). In this work, we propose an algorithm for online binary classification setting that relies solely on ERM oracle calls, and show that it has finite regret in the realizable setting and sublinearly growing regret in the agnostic setting. We bound the regret in terms of the Littlestone and threshold dimensions of the underlying concept class. We obtain similar results for nonparametric games, where the ERM oracle can be interpreted as a best response oracle, finding the best response of a player to a given history of play of the other players. In this setting, we provide learning algorithms that only rely on best response oracles and converge to approximate-minimax equilibria in two-player zero-sum games and approximate coarse correlated equilibria in multi-player general-sum games, as long as the game has a bounded fat-threshold dimension. Our algorithms apply to both binary-valued and real-valued games and can be viewed as providing justification for the wide use of double oracle and multiple oracle algorithms in the practice of solving large games.
Maximum weight independent set (MWIS) admits a $\frac1k$-approximation in inductively $k$-independent graphs and a $\frac{1}{2k}$-approximation in $k$-perfectly orientable graphs. These are a a parameterized class of graphs that generalize $k$-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph $G=(V,E)$ and a non-negative submodular function $f: 2^V \rightarrow \mathbb{R}_+$, the goal is to approximately solve $\max_{S \in \mathcal{I}_G} f(S)$ where $\mathcal{I}_G$ is the set of independent sets of $G$. We obtain an $\Omega(\frac1k)$-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least $\frac{1}{e(k+1)}$. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively $k$-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.
In this paper, we consider a new approach for semi-discretization in time and spatial discretization of a class of semi-linear stochastic partial differential equations (SPDEs) with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz continuous. Our new strategy for time discretization is based on the Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly $1$ for the approximate solution. The proof is based on new H\"older continuity estimates of the SPDE solution and the nonlinear term. For the general polynomial-type drift term, there are difficulties in deriving even the stability of the numerical solutions. We propose an interpolation-based finite element method for spatial discretization to overcome the difficulties. Then we obtain $H^1$ stability, higher moment $H^1$ stability, $L^2$ stability, and higher moment $L^2$ stability results using numerical and stochastic techniques. The nearly optimal convergence orders in time and space are hence obtained by coupling all previous results. Numerical experiments are presented to implement the proposed numerical scheme and to validate the theoretical results.
We present ContainerGym, a benchmark for reinforcement learning inspired by a real-world industrial resource allocation task. The proposed benchmark encodes a range of challenges commonly encountered in real-world sequential decision making problems, such as uncertainty. It can be configured to instantiate problems of varying degrees of difficulty, e.g., in terms of variable dimensionality. Our benchmark differs from other reinforcement learning benchmarks, including the ones aiming to encode real-world difficulties, in that it is directly derived from a real-world industrial problem, which underwent minimal simplification and streamlining. It is sufficiently versatile to evaluate reinforcement learning algorithms on any real-world problem that fits our resource allocation framework. We provide results of standard baseline methods. Going beyond the usual training reward curves, our results and the statistical tools used to interpret them allow to highlight interesting limitations of well-known deep reinforcement learning algorithms, namely PPO, TRPO and DQN.
Elementary trapping sets (ETSs) are the main culprits for the performance of LDPC codes in the error floor region. Due to the large quantity, complex structures, and computational difficulties of ETSs, how to eliminate dominant ETSs in designing LDPC codes becomes a pivotal issue to improve the error floor behavior. In practice, researchers commonly address this problem by avoiding some special graph structures to free specific ETSs in Tanner graph. In this paper, we deduce the accurate Tur\'an number of $\theta(1,2,2)$ and prove that all $(a,b)$-ETSs in Tanner graph with variable-regular degree $d_L(v)=\gamma$ must satisfy the bound $b\geq a\gamma-\frac{1}{2}a^2$, which improves the lower bound obtained by Amirzade when the girth is 6. For the case of girth 8, by limiting the relation between any two 8-cycles in the Tanner graph, we prove a similar inequality $b\geq a\gamma-\frac{a(\sqrt{8a-7}-1)}{2}$. The simulation results show that the designed codes have good performance with lower error floor over additive white Gaussian noise channels.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.