亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate alignment of a fixed mobile device equipped with inertial sensors inside a moving vehicle is important for navigation, activity recognition, and other applications. Accurate estimation of the device mounting angle is required to rotate the inertial measurement from the sensor frame to the moving platform frame to standardize measurements and improve the performance of the target task. In this work, a data-driven approach using deep neural networks (DNNs) is proposed to learn the yaw mounting angle of a smartphone equipped with an inertial measurement unit (IMU) and strapped to a car. The proposed model uses only the accelerometer and gyroscope readings from an IMU as input and, in contrast to existing solutions, does not require global position inputs from global navigation satellite systems (GNSS). To train the model in a supervised manner, IMU data is collected for training and validation with the sensor mounted at a known yaw mounting angle, and a range of ground truth labels is generated by applying a random rotation in a bounded range to the measurements. The trained model is tested on data with real rotations showing similar performance as with synthetic rotations. The trained model is deployed on an Android device and evaluated in real-time to test the accuracy of the estimated yaw mounting angle. The model is shown to find the mounting angle at an accuracy of 8 degrees within 5 seconds, and 4 degrees within 27 seconds. An experiment is conducted to compare the proposed model with an existing off-the-shelf solution.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · TOOLS · 黑盒子 · 可理解性 ·
2024 年 5 月 27 日

The emergence of tools based on artificial intelligence has also led to the need of producing explanations which are understandable by a human being. In most approaches, the system is considered a \emph{black box}, making it difficult to generate appropriate explanations. In this work, though, we consider a setting where models are \emph{transparent}: probabilistic logic programming (PLP), a paradigm that combines logic programming for knowledge representation and probability to model uncertainty. However, given a query, the usual notion of \emph{explanation} is associated with a set of choices, one for each random variable of the model. Unfortunately, such a set does not explain \emph{why} the query is true and, in fact, it may contain choices that are actually irrelevant for the considered query. To improve this situation, we present in this paper an approach to explaining explanations which is based on defining a new query-driven inference mechanism for PLP where proofs are labeled with \emph{choice expressions}, a compact and easy to manipulate representation for sets of choices. The combination of proof trees and choice expressions allows one to produce comprehensible query justifications with a causal structure.

When performing manipulation-based activities such as picking objects, a mobile robot needs to position its base at a location that supports successful execution. To address this problem, prominent approaches typically rely on costly grasp planners to provide grasp poses for a target object, which are then are then analysed to identify the best robot placements for achieving each grasp pose. In this paper, we propose instead to first find robot placements that would not result in collision with the environment and from where picking up the object is feasible, then evaluate them to find the best placement candidate. Our approach takes into account the robot's reachability, as well as RGB-D images and occupancy grid maps of the environment for identifying suitable robot poses. The proposed algorithm is embedded in a service robotic workflow, in which a person points to select the target object for grasping. We evaluate our approach with a series of grasping experiments, against an existing baseline implementation that sends the robot to a fixed navigation goal. The experimental results show how the approach allows the robot to grasp the target object from locations that are very challenging to the baseline implementation.

We address the problem of stable and robust control of vehicles with lateral error dynamics for the application of lane keeping. Lane departure is the primary reason for half of the fatalities in road accidents, making the development of stable, adaptive and robust controllers a necessity. Traditional linear feedback controllers achieve satisfactory tracking performance, however, they exhibit unstable behavior when uncertainties are induced into the system. Any disturbance or uncertainty introduced to the steering-angle input can be catastrophic for the vehicle. Therefore, controllers must be developed to actively handle such uncertainties. In this work, we introduce a Neural L1 Adaptive controller (Neural-L1) which learns the uncertainties in the lateral error dynamics of a front-steered Ackermann vehicle and guarantees stability and robustness. Our contributions are threefold: i) We extend the theoretical results for guaranteed stability and robustness of conventional L1 Adaptive controllers to Neural-L1; ii) We implement a Neural-L1 for the lane keeping application which learns uncertainties in the dynamics accurately; iii)We evaluate the performance of Neural-L1 on a physics-based simulator, PyBullet, and conduct extensive real-world experiments with the F1TENTH platform to demonstrate superior reference trajectory tracking performance of Neural-L1 compared to other state-of-the-art controllers, in the presence of uncertainties. Our project page, including supplementary material and videos, can be found at //mukhe027.github.io/Neural-Adaptive-Control/

Information access systems, such as search engines, recommender systems, and conversational assistants, have become integral to our daily lives as they help us satisfy our information needs. However, evaluating the effectiveness of these systems presents a long-standing and complex scientific challenge. This challenge is rooted in the difficulty of assessing a system's overall effectiveness in assisting users to complete tasks through interactive support, and further exacerbated by the substantial variation in user behaviour and preferences. To address this challenge, user simulation emerges as a promising solution. This book focuses on providing a thorough understanding of user simulation techniques designed specifically for evaluation purposes. We begin with a background of information access system evaluation and explore the diverse applications of user simulation. Subsequently, we systematically review the major research progress in user simulation, covering both general frameworks for designing user simulators, utilizing user simulation for evaluation, and specific models and algorithms for simulating user interactions with search engines, recommender systems, and conversational assistants. Realizing that user simulation is an interdisciplinary research topic, whenever possible, we attempt to establish connections with related fields, including machine learning, dialogue systems, user modeling, and economics. We end the book with a detailed discussion of important future research directions, many of which extend beyond the evaluation of information access systems and are expected to have broader impact on how to evaluate interactive intelligent systems in general.

Recommender systems filter out information that meets user interests. However, users may be tired of the recommendations that are too similar to the content they have been exposed to in a short historical period, which is the so-called user fatigue. Despite the significance for a better user experience, user fatigue is seldom explored by existing recommenders. In fact, there are three main challenges to be addressed for modeling user fatigue, including what features support it, how it influences user interests, and how its explicit signals are obtained. In this paper, we propose to model user Fatigue in interest learning for sequential Recommendations (FRec). To address the first challenge, based on a multi-interest framework, we connect the target item with historical items and construct an interest-aware similarity matrix as features to support fatigue modeling. Regarding the second challenge, built upon feature cross, we propose a fatigue-enhanced multi-interest fusion to capture long-term interest. In addition, we develop a fatigue-gated recurrent unit for short-term interest learning, with temporal fatigue representations as important inputs for constructing update and reset gates. For the last challenge, we propose a novel sequence augmentation to obtain explicit fatigue signals for contrastive learning. We conduct extensive experiments on real-world datasets, including two public datasets and one large-scale industrial dataset. Experimental results show that FRec can improve AUC and GAUC up to 0.026 and 0.019 compared with state-of-the-art models, respectively. Moreover, large-scale online experiments demonstrate the effectiveness of FRec for fatigue reduction. Our codes are released at //github.com/tsinghua-fib-lab/SIGIR24-FRec.

In many real-world causal inference applications, the primary outcomes (labels) are often partially missing, especially if they are expensive or difficult to collect. If the missingness depends on covariates (i.e., missingness is not completely at random), analyses based on fully observed samples alone may be biased. Incorporating surrogates, which are fully observed post-treatment variables related to the primary outcome, can improve estimation in this case. In this paper, we study the role of surrogates in estimating continuous treatment effects and propose a doubly robust method to efficiently incorporate surrogates in the analysis, which uses both labeled and unlabeled data and does not suffer from the above selection bias problem. Importantly, we establish the asymptotic normality of the proposed estimator and show possible improvements on the variance compared with methods that solely use labeled data. Extensive simulations show our methods enjoy appealing empirical performance.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

北京阿比特科技有限公司