亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The likelihood-informed subspace (LIS) method offers a viable route to reducing the dimensionality of high-dimensional probability distributions arising in Bayesian inference. LIS identifies an intrinsic low-dimensional linear subspace where the target distribution differs the most from some tractable reference distribution. Such a subspace can be identified using the leading eigenvectors of a Gram matrix of the gradient of the log-likelihood function. Then, the original high-dimensional target distribution is approximated through various forms of marginalization of the likelihood function, in which the approximated likelihood only has support on the intrinsic low-dimensional subspace. This approximation enables the design of inference algorithms that can scale sub-linearly with the apparent dimensionality of the problem. Intuitively, the accuracy of the approximation, and hence the performance of the inference algorithms, are influenced by three factors -- the dimension truncation error in identifying the subspace, Monte Carlo error in estimating the Gram matrices, and Monte Carlo error in constructing marginalizations. %This work establishes a unified framework to analyze each of these three factors and their interplay. Under mild technical assumptions, we establish error bounds for a range of existing dimension reduction techniques based on the principle of LIS. Our error bounds also provide useful insights into the accuracy of these methods. In addition, we analyze the integration of LIS with sampling methods such as Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC). We also demonstrate the applicability of our analysis on a linear inverse problem with Gaussian prior, which shows that all the estimates can be dimension-independent if the prior covariance is a trace-class operator.

相關內容

In this paper, we employ the techniques developed for second order operators to obtain the new estimates of Virtual Element Method for fourth order operators. The analysis is based on elements with proper shape regularity. Estimates for projection and interpolation operators are derived. Also, the biharmonic problem is solved by Virtual Element Method, optimal error estimates are obtained. Our choice of the discrete form for the right hand side function relaxes the regularity requirement in previous work and the error estimates between exact solutions and the computable numerical solutions are provided.

Sidon spaces have been introduced by Bachoc, Serra and Z\'emor in 2017 in connection with the linear analogue of Vosper's Theorem. In this paper, we propose a generalization of this notion to sets of subspaces, which we call multi-Sidon space. We analyze their structures, provide examples and introduce a notion of equivalnce among them. Making use of these results, we study a class of linear sets in PG$(r-1,q^n)$ determined by $r$ points and we investigate multi-orbit cyclic subspace codes.

The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators that maps between infinite dimensional function spaces. We formulate the approximation of operators by composition of a class of linear integral operators and nonlinear activation functions, so that the composed operator can approximate complex nonlinear operators. We prove a universal approximation theorem for our construction. Furthermore, we introduce four classes of operator parameterizations: graph-based operators, low-rank operators, multipole graph-based operators, and Fourier operators and describe efficient algorithms for computing with each one. The proposed neural operators are resolution-invariant: they share the same network parameters between different discretizations of the underlying function spaces and can be used for zero-shot super-resolutions. Numerically, the proposed models show superior performance compared to existing machine learning based methodologies on Burgers' equation, Darcy flow, and the Navier-Stokes equation, while being several order of magnitude faster compared to conventional PDE solvers.

Decision trees are widely-used classification and regression models because of their interpretability and good accuracy. Classical methods such as CART are based on greedy approaches but a growing attention has recently been devoted to optimal decision trees. We investigate the nonlinear continuous optimization formulation proposed in Blanquero et al. (EJOR, vol. 284, 2020; COR, vol. 132, 2021) for (sparse) optimal randomized classification trees. Sparsity is important not only for feature selection but also to improve interpretability. We first consider alternative methods to sparsify such trees based on concave approximations of the $l_{0}$ ``norm". Promising results are obtained on 24 datasets in comparison with $l_1$ and $l_{\infty}$ regularizations. Then, we derive bounds on the VC dimension of multivariate randomized classification trees. Finally, since training is computationally challenging for large datasets, we propose a general decomposition scheme and an efficient version of it. Experiments on larger datasets show that the proposed decomposition method is able to significantly reduce the training times without compromising the accuracy.

Most stochastic gradient descent algorithms can optimize neural networks that are sub-differentiable in their parameters; however, this implies that the neural network's activation function must exhibit a degree of continuity which limits the neural network model's uniform approximation capacity to continuous functions. This paper focuses on the case where the discontinuities arise from distinct sub-patterns, each defined on different parts of the input space. We propose a new discontinuous deep neural network model trainable via a decoupled two-step procedure that avoids passing gradient updates through the network's only and strategically placed, discontinuous unit. We provide approximation guarantees for our architecture in the space of bounded continuous functions and universal approximation guarantees in the space of piecewise continuous functions which we introduced herein. We present a novel semi-supervised two-step training procedure for our discontinuous deep learning model, tailored to its structure, and we provide theoretical support for its effectiveness. The performance of our model and trained with the propose procedure is evaluated experimentally on both real-world financial datasets and synthetic datasets.

Complex scientific models where the likelihood cannot be evaluated present a challenge for statistical inference. Over the past two decades, a wide range of algorithms have been proposed for learning parameters in computationally feasible ways, often under the heading of approximate Bayesian computation or likelihood-free inference. There is, however, no consensus on how to rigorously evaluate the performance of these algorithms. Here, we argue for scoring algorithms by the mean squared error in estimating expectations of functions with respect to the posterior. We show that score implies common alternatives, including the acceptance rate and effective sample size, as limiting special cases. We then derive asymptotically optimal distributions for choosing or sampling discrete or continuous simulation parameters, respectively. Our recommendations differ significantly from guidelines based on alternative scores outside of their region of validity. As an application, we show sequential Monte Carlo in this context can be made more accurate with no new samples by accepting particles from all rounds.

We present VPVnet, a deep neural network method for the Stokes' equations under reduced regularity. Different with recently proposed deep learning methods [40,51] which are based on the original form of PDEs, VPVnet uses the least square functional of the first-order velocity-pressure-vorticity (VPV) formulation ([30]) as loss functions. As such, only first-order derivative is required in the loss functions, hence the method is applicable to a much larger class of problems, e.g. problems with non-smooth solutions. Despite that several methods have been proposed recently to reduce the regularity requirement by transforming the original problem into a corresponding variational form, while for the Stokes' equations, the choice of approximating spaces for the velocity and the pressure has to satisfy the LBB condition additionally. Here by making use of the VPV formulation, lower regularity requirement is achieved with no need for considering the LBB condition. Convergence and error estimates have been established for the proposed method. It is worth emphasizing that the VPVnet method is divergence-free and pressure-robust, while classical inf-sup stable mixed finite elements for the Stokes' equations are not pressure-robust. Various numerical experiments including 2D and 3D lid-driven cavity test cases are conducted to demonstrate its efficiency and accuracy.

This article presents a new way to study the theory of regularized learning for generalized data in Banach spaces including representer theorems and convergence theorems. The generalized data are composed of linear functionals and real scalars as the input and output elements to represent the discrete information of different local models. By the extension of the classical machine learning, the empirical risks are computed by the generalized data and the loss functions. According to the techniques of regularization, the exact solutions are approximated globally by minimizing the regularized empirical risks over the Banach spaces. The existence and convergence of the approximate solutions are guaranteed by the relative compactness of the generalized input data in the predual spaces of the Banach spaces.

Multiplying matrices is among the most fundamental and compute-intensive operations in machine learning. Consequently, there has been significant work on efficiently approximating matrix multiplies. We introduce a learning-based algorithm for this task that greatly outperforms existing methods. Experiments using hundreds of matrices from diverse domains show that it often runs $100\times$ faster than exact matrix products and $10\times$ faster than current approximate methods. In the common case that one matrix is known ahead of time, our method also has the interesting property that it requires zero multiply-adds. These results suggest that a mixture of hashing, averaging, and byte shuffling$-$the core operations of our method$-$could be a more promising building block for machine learning than the sparsified, factorized, and/or scalar quantized matrix products that have recently been the focus of substantial research and hardware investment.

Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.

北京阿比特科技有限公司