亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a contact-implicit planning approach that can generate contact-interaction trajectories for non-prehensile manipulation problems without tuning or a tailored initial guess and with high success rates. This is achieved by leveraging the concept of state-triggered constraints (STCs) to capture the hybrid dynamics induced by discrete contact modes without explicitly reasoning about the combinatorics. STCs enable triggering arbitrary constraints by a strict inequality condition in a continuous way. We first use STCs to develop an automatic contact constraint activation method to minimize the effective constraint space based on the utility of contact candidates for a given task. Then, we introduce a re-formulation of the Coulomb friction model based on STCs that is more efficient for the discovery of tangential forces than the well-studied complementarity constraints-based approach. Last, we include the proposed friction model in the planning and control of quasi-static planar pushing. The performance of the STC-based contact activation and friction methods is evaluated by extensive simulation experiments in a dynamic pushing scenario. The results demonstrate that our methods outperform the baselines based on complementarity constraints with a significant decrease in the planning time and a higher success rate. We then compare the proposed quasi-static pushing controller against a mixed-integer programming-based approach in simulation and find that our method is computationally more efficient and provides a better tracking accuracy, with the added benefit of not requiring an initial control trajectory. Finally, we present hardware experiments demonstrating the usability of our framework in executing complex trajectories in real-time even with a low-accuracy tracking system.

相關內容

Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.

Multi-robot manipulation tasks involve various control entities that can be separated into dynamically independent parts. A typical example of such real-world tasks is dual-arm manipulation. Learning to naively solve such tasks with reinforcement learning is often unfeasible due to the sample complexity and exploration requirements growing with the dimensionality of the action and state spaces. Instead, we would like to handle such environments as multi-agent systems and have several agents control parts of the whole. However, decentralizing the generation of actions requires coordination across agents through a channel limited to information central to the task. This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents. We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.

We introduce Action-GPT, a plug and play framework for incorporating Large Language Models (LLMs) into text-based action generation models. Action phrases in current motion capture datasets contain minimal and to-the-point information. By carefully crafting prompts for LLMs, we generate richer and fine-grained descriptions of the action. We show that utilizing these detailed descriptions instead of the original action phrases leads to better alignment of text and motion spaces. Our experiments show qualitative and quantitative improvement in the quality of synthesized motions produced by recent text-to-motion models. Code, pretrained models and sample videos will be made available at //actiongpt.github.io

This paper describes several improvements to a new method for signal decomposition that we recently formulated under the name of Differentiable Dictionary Search (DDS). The fundamental idea of DDS is to exploit a class of powerful deep invertible density estimators called normalizing flows, to model the dictionary in a linear decomposition method such as NMF, effectively creating a bijection between the space of dictionary elements and the associated probability space, allowing a differentiable search through the dictionary space, guided by the estimated densities. As the initial formulation was a proof of concept with some practical limitations, we will present several steps towards making it scalable, hoping to improve both the computational complexity of the method and its signal decomposition capabilities. As a testbed for experimental evaluation, we choose the task of frame-level piano transcription, where the signal is to be decomposed into sources whose activity is attributed to individual piano notes. To highlight the impact of improved non-linear modelling of sources, we compare variants of our method to a linear overcomplete NMF baseline. Experimental results will show that even in the absence of additional constraints, our models produce increasingly sparse and precise decompositions, according to two pertinent evaluation measures.

Over the last years, robotic cloth manipulation has gained relevance within the research community. While significant advances have been made in robotic manipulation of rigid objects, the manipulation of non-rigid objects such as cloth garments is still a challenging problem. The uncertainty on how cloth behaves often requires the use of model-based approaches. However, cloth models have a very high dimensionality. Therefore, it is difficult to find a middle point between providing a manipulator with a dynamics model of cloth and working with a state space of tractable dimensionality. For this reason, most cloth manipulation approaches in literature perform static or quasi-static manipulation. In this paper, we propose a variation of Gaussian Process Dynamical Models (GPDMs) to model cloth dynamics in a low-dimensional manifold. GPDMs project a high-dimensional state space into a smaller dimension latent space which is capable of keeping the dynamic properties. Using such approach, we add control variables to the original formulation. In this way, it is possible to take into account the robot commands exerted on the cloth dynamics. We call this new version Controlled Gaussian Process Dynamical Model (CGPDM). Moreover, we propose an alternative parametric structure for the model, that is richer than the one employed in previous GPDM realizations. The modeling capacity of our proposal has been tested in both a simulated and a real scenario, where CGPDM proved to be capable of generalizing over a wide range of movements and correctly predicting the cloth motions obtained by previously unseen sequences of control actions.

Robotic planning in real-world scenarios typically requires joint optimization of logic and continuous variables. A core challenge to combine the strengths of logic planners and continuous solvers is the design of an efficient interface that informs the logical search about continuous infeasibilities. In this paper we present a novel iterative algorithm that connects logic planning with nonlinear optimization through a bidirectional interface, achieved by the detection of minimal subsets of nonlinear constraints that are infeasible. The algorithm continuously builds a database of graphs that represent (in)feasible subsets of continuous variables and constraints, and encodes this knowledge in the logical description. As a foundation for this algorithm, we introduce Planning with Nonlinear Transition Constraints (PNTC), a novel planning formulation that clarifies the exact assumptions our algorithm requires and can be applied to model Task and Motion Planning (TAMP) efficiently. Our experimental results show that our framework significantly outperforms alternative optimization-based approaches for TAMP.

We propose a hybrid combination of active inference and behavior trees (BTs) for reactive action planning and execution in dynamic environments, showing how robotic tasks can be formulated as a free-energy minimization problem. The proposed approach allows handling partially observable initial states and improves the robustness of classical BTs against unexpected contingencies while at the same time reducing the number of nodes in a tree. In this work, we specify the nominal behavior offline, through BTs. However, in contrast to previous approaches, we introduce a new type of leaf node to specify the desired state to be achieved rather than an action to execute. The decision of which action to execute to reach the desired state is performed online through active inference. This results in continual online planning and hierarchical deliberation. By doing so, an agent can follow a predefined offline plan while still keeping the ability to locally adapt and take autonomous decisions at runtime, respecting safety constraints. We provide proof of convergence and robustness analysis, and we validate our method in two different mobile manipulators performing similar tasks, both in a simulated and real retail environment. The results showed improved runtime adaptability with a fraction of the hand-coded nodes compared to classical BTs.

The prevailing reinforcement-learning-based traffic signal control methods are typically staging-optimizable or duration-optimizable, depending on the action spaces. In this paper, we propose a novel control architecture, TBO, which is based on hybrid proximal policy optimization. To the best of our knowledge, TBO is the first RL-based algorithm to implement synchronous optimization of the staging and duration. Compared to discrete and continuous action spaces, hybrid action space is a merged search space, in which TBO better implements the trade-off between frequent switching and unsaturated release. Experiments are given to demonstrate that TBO reduces the queue length and delay by 13.78% and 14.08% on average, respectively, compared to the existing baselines. Furthermore, we calculate the Gini coefficients of the right-of-way to indicate TBO does not harm fairness while improving efficiency.

Large language models (LLMs) have exhibited remarkable capabilities in learning from explanations in prompts. Yet, there has been limited understanding of what makes explanations effective for in-context learning. This work aims to better understand the mechanisms by which explanations are used for in-context learning. We first study the impact of two different factors on prompting performance when using explanations: the computation trace (the way the solution is decomposed) and the natural language of the prompt. By perturbing explanations on three controlled tasks, we show that both factors contribute to the effectiveness of explanations, indicating that LLMs do faithfully follow the explanations to some extent. We further study how to form maximally effective sets of explanations for solving a given test query. We find that LLMs can benefit from the complementarity of the explanation set as they are able to fuse different reasoning specified by individual exemplars in prompts. Additionally, having relevant exemplars also contributes to more effective prompts. Therefore, we propose a maximal-marginal-relevance-based exemplar selection approach for constructing exemplar sets that are both relevant as well as complementary, which successfully improves the in-context learning performance across three real-world tasks on multiple LLMs.

Problems which require both long-horizon planning and continuous control capabilities pose significant challenges to existing reinforcement learning agents. In this paper we introduce a novel hierarchical reinforcement learning agent which links temporally extended skills for continuous control with a forward model in a symbolic discrete abstraction of the environment's state for planning. We term our agent SEADS for Symbolic Effect-Aware Diverse Skills. We formulate an objective and corresponding algorithm which leads to unsupervised learning of a diverse set of skills through intrinsic motivation given a known state abstraction. The skills are jointly learned with the symbolic forward model which captures the effect of skill execution in the state abstraction. After training, we can leverage the skills as symbolic actions using the forward model for long-horizon planning and subsequently execute the plan using the learned continuous-action control skills. The proposed algorithm learns skills and forward models that can be used to solve complex tasks which require both continuous control and long-horizon planning capabilities with high success rate. It compares favorably with other flat and hierarchical reinforcement learning baseline agents and is successfully demonstrated with a real robot.

北京阿比特科技有限公司