亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For quantum error-correcting codes to be realizable, it is important that the qubits subject to the code constraints exhibit some form of limited connectivity. The works of Bravyi & Terhal (BT) and Bravyi, Poulin & Terhal (BPT) established that geometric locality constrains code properties -- for instance $[[n,k,d]]$ quantum codes defined by local checks on the $D$-dimensional lattice must obey $k d^{2/(D-1)} \le O(n)$. Baspin and Krishna studied the more general question of how the connectivity graph associated with a quantum code constrains the code parameters. These trade-offs apply to a richer class of codes compared to the BPT and BT bounds, which only capture geometrically-local codes. We extend and improve this work, establishing a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph. We also obtain a distance bound that covers all stabilizer codes with a particular separation profile, rather than only LDPC codes.

相關內容

Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided last year by Huang and Tikhomirov's average-case analysis of GEPP, which showed GEPP growth factors stay at most polynomial with very high probability when using small Gaussian perturbations. GE with complete pivoting (GECP) has also seen a lot of recent interest, with recent improvements to lower bounds on worst-case GECP growth provided by Edelman and Urschel earlier this year. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. We will also study systems when GECP leads to larger growth than GEPP, which will lead to new empirical lower bounds on how much worse GECP can behave compared to GEPP in terms of growth. We also present an empirical study on a family of exponential GEPP growth matrices whose polynomial behavior in small neighborhoods limits to the initial GECP growth factor.

As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in an algorithm which uses a constraint-postponement strategy to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.

In classical statistics, a well known paradigm consists in establishing asymptotic equivalence between an experiment of i.i.d. observations and a Gaussian shift experiment, with the aim of obtaining optimal estimators in the former complicated model from the latter simpler model. In particular, a statistical experiment consisting of $n$ i.i.d observations from d-dimensional multinomial distributions can be well approximated by an experiment consisting of $d-1$ dimensional Gaussian distributions. In a quantum version of the result, it has been shown that a collection of $n$ qudits (d-dimensional quantum states) of full rank can be well approximated by a quantum system containing a classical part, which is a $d-1$ dimensional Gaussian distribution, and a quantum part containing an ensemble of $d(d-1)/2$ shifted thermal states. In this paper, we obtain a generalization of this result when the qudits are not of full rank. We show that when the rank of the qudits is $r$, then the limiting experiment consists of an $r-1$ dimensional Gaussian distribution and an ensemble of both shifted pure and shifted thermal states. For estimation purposes, we establish an asymptotic minimax result in the limiting Gaussian model. Analogous results are then obtained for estimation of a low-rank qudit from an ensemble of identically prepared, independent quantum systems, using the local asymptotic equivalence result. We also consider the problem of estimation of a linear functional of the quantum state. We construct an estimator for the functional, analyze the risk and use quantum local asymptotic equivalence to show that our estimator is also optimal in the minimax sense.

The Pauli stabilizer formalism is perhaps the most thoroughly studied means of procuring quantum error-correcting codes, whereby the code is obtained through commutative Pauli operators and ``stabilized'' by them. In this work we will show that every quantum error-correcting code, including Pauli stabilizer codes and subsystem codes, has a similar structure, in that the code can be stabilized by commutative ``Paulian'' operators which share many features with Pauli operators and which form a \textbf{Paulian stabilizer group}. By facilitating a controlled gate we can measure these Paulian operators to acquire the error syndrome. Examples concerning codeword stabilized codes and bosonic codes will be presented; specifically, one of the examples has been demonstrated experimentally and the observable for detecting the error turns out to be Paulian, thereby showing the potential utility of this approach. This work provides a possible approach to implement error-correcting codes and to find new codes.

Touchscreens equipped with friction modulation can provide rich tactile feedback to their users. To date, there are no standard metrics to properly quantify the benefit brought by haptic feedback.The definition of such metrics is not straightforward since friction modulation technologies can be achieved by either ultrasonic waves or with electroadhesion. In addition, the output depends strongly on the user, both because of the mechanical behavior of the fingertip and personal tactile somatosensory capabilities. This paper proposes a method to evaluate and compare the performance of haptic tablets on an objective scale. The method first defines multiple metrics using physical measurements of friction and latency. The comparison is completed with metrics derived from information theory and based on pointing tasks performed by users. We evaluated the comparison method with two haptic devices, one based on ultrasonic friction modulation and the other based on electroadhesion. This work paves the way toward the definitions of standard specifications for haptic tablets, to establish benchmarks and guidelines for improving surface haptic devices.

We consider spin systems on general $n$-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen--Wang dynamics for the $q$-state ferromagnetic Potts model on graphs of maximum degree $\Delta$, where $\Delta$ is allowed to grow with $n$, converges in $O((\Delta \log n)^c)$ steps where $c > 0$ is a constant independent of $\Delta$ and $n$. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is $O(\Delta^c \log n)$ for a constant $c>0$ independent of $\Delta$ and $n$. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. Our result implies optimal $O(\log n)$ mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called $k$-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph.

The occurrence of extreme events like heavy precipitation or storms at a certain location often shows a clustering behaviour and is thus not described well by a Poisson process. We construct a general model for the inter-exceedance times in between such events which combines different candidate models for such behaviour. This allows us to distinguish data generating mechanisms leading to clusters of dependent events with exponential inter-exceedance times in between clusters from independent events with heavy-tailed inter-exceedance times, and even allows us to combine these two mechanisms for better descriptions of such occurrences. We investigate a modification of the Cram\'er-von Mises distance for the purpose of model fitting. An application to mid-latitude winter cyclones illustrates the usefulness of our work.

In the symbolic verification of cryptographic protocols, a central problem is deciding whether a protocol admits an execution which leaks a designated secret to the malicious intruder. Rusinowitch & Turuani (2003) show that, when considering finitely many sessions, this ``insecurity problem'' is NP-complete. Central to their proof strategy is the observation that any execution of a protocol can be simulated by one where the intruder only communicates terms of bounded size. However, when we consider models where, in addition to terms, one can also communicate logical statements about terms, the analysis of the insecurity problem becomes tricky when both these inference systems are considered together. In this paper we consider the insecurity problem for protocols with logical statements that include {\em equality on terms} and {\em existential quantification}. Witnesses for existential quantifiers may be unbounded, and obtaining small witness terms while maintaining equality proofs complicates the analysis considerably. We extend techniques from Rusinowitch & Turuani (2003) to show that this problem is also in NP.

This paper considers a Bayesian approach for inclusion detection in nonlinear inverse problems using two known and popular push-forward prior distributions: the star-shaped and level set prior distributions. We analyze the convergence of the corresponding posterior distributions in a small measurement noise limit. The methodology is general; it works for priors arising from any H\"older continuous transformation of Gaussian random fields and is applicable to a range of inverse problems. The level set and star-shaped prior distributions are examples of push-forward priors under H\"older continuous transformations that take advantage of the structure of inclusion detection problems. We show that the corresponding posterior mean converges to the ground truth in a proper probabilistic sense. Numerical tests on a two-dimensional quantitative photoacoustic tomography problem showcase the approach. The results highlight the convergence properties of the posterior distributions and the ability of the methodology to detect inclusions with sufficiently regular boundaries.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

北京阿比特科技有限公司