In this paper, we propose a pre-configured error pattern ordered statistics decoding (PEPOSD) algorithm and discuss its application to short cyclic redundancy check (CRC)-polar codes. Unlike the traditional OSD that changes the most reliable independent symbols, we regard the decoding process as testing the error patterns, like guessing random additive noise decoding (GRAND). Also, the pre-configurator referred from ordered reliability bits (ORB) GRAND can better control the range and testing order of EPs. Offline-online structure can accelerate the decoding process. Additionally, we also introduce two orders to optimize the search order for testing EPs. Compared with CRC-aided OSD and list decoding, PEPOSD can achieve a better trade-off between accuracy and complexity.
In this paper we propose a general framework to integrate supervised and unsupervised examples with background knowledge expressed by a collection of first-order logic clauses into kernel machines. In particular, we consider a multi-task learning scheme where multiple predicates defined on a set of objects are to be jointly learned from examples, enforcing a set of FOL constraints on the admissible configurations of their values. The predicates are defined on the feature spaces, in which the input objects are represented, and can be either known a priori or approximated by an appropriate kernel-based learner. A general approach is presented to convert the FOL clauses into a continuous implementation that can deal with the outputs computed by the kernel-based predicates. The learning problem is formulated as a semi-supervised task that requires the optimization in the primal of a loss function that combines a fitting loss measure on the supervised examples, a regularization term, and a penalty term that enforces the constraints on both the supervised and unsupervised examples. Unfortunately, the penalty term is not convex and it can hinder the optimization process. However, it is possible to avoid poor solutions by using a two stage learning schema, in which the supervised examples are learned first and then the constraints are enforced.
We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not reachable. In response, we explore ensembling as a way of combining the best of both approaches. We propose a novel method for learning query-dependent ensemble weights by using the distributions of scores assigned by individual models to all candidate entities. Our ensemble baseline achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over best individual models.
People primarily consult tables to conduct data analysis or answer specific questions. Text generation systems that can provide accurate table summaries tailored to users' information needs can facilitate more efficient access to relevant data insights. Motivated by this, we define a new query-focused table summarization task, where text generation models have to perform human-like reasoning and analysis over the given table to generate a tailored summary. We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables covering diverse topics. We investigate a set of strong baselines on QTSumm, including text generation, table-to-text generation, and large language models. Experimental results and manual analysis reveal that the new task presents significant challenges in table-to-text generation for future research. Moreover, we propose a new approach named ReFactor, to retrieve and reason over query-relevant information from tabular data to generate several natural language facts. Experimental results demonstrate that ReFactor can bring improvements to baselines by concatenating the generated facts to the model input. Our data and code are publicly available at //github.com/yale-nlp/QTSumm.
In this paper, we provide a rigorous proof of convergence of the Adaptive Moment Estimate (Adam) algorithm for a wide class of optimization objectives. Despite the popularity and efficiency of the Adam algorithm in training deep neural networks, its theoretical properties are not yet fully understood, and existing convergence proofs require unrealistically strong assumptions, such as globally bounded gradients, to show the convergence to stationary points. In this paper, we show that Adam provably converges to $\epsilon$-stationary points with ${O}(\epsilon^{-4})$ gradient complexity under far more realistic conditions. The key to our analysis is a new proof of boundedness of gradients along the optimization trajectory of Adam, under a generalized smoothness assumption according to which the local smoothness (i.e., Hessian norm when it exists) is bounded by a sub-quadratic function of the gradient norm. Moreover, we propose a variance-reduced version of Adam with an accelerated gradient complexity of ${O}(\epsilon^{-3})$.
Standard probabilistic sparse coding assumes a Laplace prior, a linear mapping from latents to observables, and Gaussian observable distributions. We here derive a solely entropy-based learning objective for the parameters of standard sparse coding. The novel variational objective has the following features: (A) unlike MAP approximations, it uses non-trivial posterior approximations for probabilistic inference; (B) unlike for previous non-trivial approximations, the novel objective is fully analytical; and (C) the objective allows for a novel principled form of annealing. The objective is derived by first showing that the standard ELBO objective converges to a sum of entropies, which matches similar recent results for generative models with Gaussian priors. The conditions under which the ELBO becomes equal to entropies are then shown to have analytical solutions, which leads to the fully analytical objective. Numerical experiments are used to demonstrate the feasibility of learning with such entropy-based ELBOs. We investigate different posterior approximations including Gaussians with correlated latents and deep amortized approximations. Furthermore, we numerically investigate entropy-based annealing which results in improved learning. Our main contributions are theoretical, however, and they are twofold: (1) for non-trivial posterior approximations, we provide the (to the knowledge of the authors) first analytical ELBO objective for standard probabilistic sparse coding; and (2) we provide the first demonstration on how a recently shown convergence of the ELBO to entropy sums can be used for learning.
Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.
This paper presents a unified approach for maximizing continuous DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the general convex set. We consider settings where the oracle provides access to either the gradient of the function or only the function value, and where the oracle access is either deterministic or stochastic. We determine the number of required oracle accesses in all cases. Our approach gives new/improved results for nine out of the sixteen considered cases, avoids computationally expensive projections in two cases, with the proposed framework matching performance of state-of-the-art approaches in the remaining five cases. Notably, our approach for the stochastic function value-based oracle enables the first regret bounds with bandit feedback for stochastic DR-submodular functions.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.