Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards. This technology is now integral to intelligent transportation systems. Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting, often referred to as ``shortcut learning", resulting from limited data samples. In this paper, we introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty. Motivated by human rating patterns, we designed a two-dimensional supervisory matrix based on marginal Gaussian distributions to train the classifier. Gaussian distributions help amplify intra-class uncertainty while ensuring the Score-Softmax classifier learns accurate knowledge. Furthermore, leveraging the summation of independent Gaussian distributed random variables, we introduced a multi-channel information fusion method. This strategy effectively resolves the multi-information fusion challenge for the Score-Softmax classifier. Concurrently, we substantiate the necessity of transfer learning and multi-dataset combination. We conducted cross-dataset experiments using the SFD, AUCDD-V1, and 100-Driver datasets, demonstrating that Score-Softmax improves cross-dataset performance without modifying the model architecture. This provides a new approach for enhancing neural network generalization. Additionally, our information fusion approach outperforms traditional methods.
Measurement uncertainties, represented by cyber-attacks and data losses, seriously degrade the quality of power system measurements. Fortunately, the powerful generation ability of the denoising diffusion models can enable more precise measurement generation for power system data recovery. However, the controllable data generation and efficient computing methods of denoising diffusion models for deterministic trajectory still need further investigation. To this end, this paper proposes an improved two-stage denoising diffusion model (TSDM) to identify and reconstruct the measurements with various measurement uncertainties. The first stage of the model comprises a classifier-guided conditional anomaly detection component, while the second stage involves diffusion-based measurement imputation component. Moreover, the proposed TSDM adopts precise means and optimal variances to accelerate the diffusion generation process with subsequence sampling. Extensive numerical case studies demonstrate that the proposed TSDM can accurately recover power system measurements despite strong randomness under renewable energy integration and highly nonlinear dynamics under complex cyber-physical contingencies. Additionally, the proposed TSDM has stronger robustness compared to existing reconstruction networks and exhibits lower computational complexity than general denoising diffusion models.
Face clustering tasks can learn hierarchical semantic information from large-scale data, which has the potential to help facilitate face recognition. However, there are few works on this problem. This paper explores it by proposing a joint optimization task of label classification and supervised contrastive clustering to introduce the cluster knowledge to the traditional face recognition task in two ways. We first extend ArcFace with a cluster-guided angular margin to adjust the within-class feature distribution according to the hard level of face clustering. Secondly, we propose a supervised contrastive clustering approach to pull the features to the cluster center and propose the cluster-aligning procedure to align the cluster center and the learnable class center in the classifier for joint training. Finally, extensive qualitative and quantitative experiments on popular facial benchmarks demonstrate the effectiveness of our paradigm and its superiority over the existing approaches to face recognition.
Ensuring the reliability of power electronic converters is a matter of great importance, and data-driven condition monitoring techniques are cementing themselves as an important tool for this purpose. However, translating methods that work well in controlled lab environments to field applications presents significant challenges, notably because of the limited diversity and accuracy of the lab training data. By enabling the use of field data, online machine learning can be a powerful tool to overcome this problem, but it introduces additional challenges in ensuring the stability and predictability of the training processes. This work presents an edge computing method that mitigates these shortcomings with minimal additional memory usage, by employing an autonomous algorithm that prioritizes the storage of training samples with larger prediction errors. The method is demonstrated on the use case of a self-commissioning condition monitoring system, in the form of a thermal anomaly detection scheme for a variable frequency motor drive, where the algorithm self-learned to distinguish normal and anomalous operation with minimal prior knowledge. The obtained results, based on experimental data, show a significant improvement in prediction accuracy and training speed, when compared to equivalent models trained online without the proposed data selection process.
Developing clinical prediction models (e.g., mortality prediction) based on electronic health records (EHRs) typically relies on expert opinion for feature selection and adjusting observation window size. This burdens experts and creates a bottleneck in the development process. We propose Retrieval-Enhanced Medical prediction model (REMed) to address such challenges. REMed can essentially evaluate an unlimited number of clinical events, select the relevant ones, and make predictions. This approach effectively eliminates the need for manual feature selection and enables an unrestricted observation window. We verified these properties through experiments on 27 clinical tasks and two independent cohorts from publicly available EHR datasets, where REMed outperformed other contemporary architectures that aim to handle as many events as possible. Notably, we found that the preferences of REMed align closely with those of medical experts. We expect our approach to significantly expedite the development of EHR prediction models by minimizing clinicians' need for manual involvement.
Knowledge distillation (KD) emerges as a promising yet challenging technique for compressing deep neural networks, aiming to transfer extensive learning representations from proficient and computationally intensive teacher models to compact student models. However, current KD methods for super-resolution (SR) models have limited performance and restricted applications, since the characteristics of SR tasks are overlooked. In this paper, we put forth an approach from the perspective of effective data utilization, namely, the Data Upcycling Knowledge Distillation (DUKD), which facilitates the student model by the prior knowledge the teacher provided through the upcycled in-domain data derived from the input images. Besides, for the first time, we realize the label consistency regularization in KD for SR models, which is implemented by the paired invertible data augmentations. It constrains the training process of KD and leads to better generalization capability of the student model. The DUKD, due to its versatility, can be applied across a broad spectrum of teacher-student architectures (e.g., CNN and Transformer models) and SR tasks, such as single image SR, real-world SR, and SR quantization, and is in parallel with other compression techniques. Comprehensive experiments on diverse benchmarks demonstrate that the DUKD method significantly outperforms previous art.
The deployment of autonomous vehicles (AVs) has faced hurdles due to the dominance of rare but critical corner cases within the long-tail distribution of driving scenarios, which negatively affects their overall performance. To address this challenge, adversarial generation methods have emerged as a class of efficient approaches to synthesize safety-critical scenarios for AV testing. However, these generated scenarios are often underutilized for AV training, resulting in the potential for continual AV policy improvement remaining untapped, along with a deficiency in the closed-loop design needed to achieve it. Therefore, we tailor the Stackelberg Driver Model (SDM) to accurately characterize the hierarchical nature of vehicle interaction dynamics, facilitating iterative improvement by engaging background vehicles (BVs) and AV in a sequential game-like interaction paradigm. With AV acting as the leader and BVs as followers, this leader-follower modeling ensures that AV would consistently refine its policy, always taking into account the additional information that BVs play the best response to challenge AV. Extensive experiments have shown that our algorithm exhibits superior performance compared to several baselines especially in higher dimensional scenarios, leading to substantial advancements in AV capabilities while continually generating progressively challenging scenarios. Code is available at //github.com/BlueCat-de/SDM.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.