Measurement uncertainties, represented by cyber-attacks and data losses, seriously degrade the quality of power system measurements. Fortunately, the powerful generation ability of the denoising diffusion models can enable more precise measurement generation for power system data recovery. However, the controllable data generation and efficient computing methods of denoising diffusion models for deterministic trajectory still need further investigation. To this end, this paper proposes an improved two-stage denoising diffusion model (TSDM) to identify and reconstruct the measurements with various measurement uncertainties. The first stage of the model comprises a classifier-guided conditional anomaly detection component, while the second stage involves diffusion-based measurement imputation component. Moreover, the proposed TSDM adopts precise means and optimal variances to accelerate the diffusion generation process with subsequence sampling. Extensive numerical case studies demonstrate that the proposed TSDM can accurately recover power system measurements despite strong randomness under renewable energy integration and highly nonlinear dynamics under complex cyber-physical contingencies. Additionally, the proposed TSDM has stronger robustness compared to existing reconstruction networks and exhibits lower computational complexity than general denoising diffusion models.
This work addresses the development of a physics-informed neural network (PINN) with a loss term derived from a discretized time-dependent reduced-order system. In this work, first, the governing equations are discretized using a finite difference scheme (whereas, any other discretization technique can be adopted), then projected on a reduced or latent space using the Proper Orthogonal Decomposition (POD)-Galerkin approach and next, the residual arising from discretized reduced order equation is considered as an additional loss penalty term alongside the data-driven loss term using different variants of deep learning method such as Artificial neural network (ANN), Long Short-Term Memory based neural network (LSTM). The LSTM neural network has been proven to be very effective for time-dependent problems in a purely data-driven environment. The current work demonstrates the LSTM network's potential over ANN networks in physics-informed neural networks (PINN) as well. The potential of using discretized governing equations instead of continuous form lies in the flexibility of input to the PINN. Different sizes of data ranging from small, medium to big datasets are used to assess the potential of discretized-physics-informed neural networks when there is very sparse or no data available. The proposed methods are applied to a pitch-plunge airfoil motion governed by rigid-body dynamics and a one-dimensional viscous Burgers' equation. The current work also demonstrates the prediction capability of various discretized-physics-informed neural networks outside the domain where the data is available or governing equation-based residuals are minimized.
Algorithms that ensure reproducible findings from large-scale, high-dimensional data are pivotal in numerous signal processing applications. In recent years, multivariate false discovery rate (FDR) controlling methods have emerged, providing guarantees even in high-dimensional settings where the number of variables surpasses the number of samples. However, these methods often fail to reliably control the FDR in the presence of highly dependent variable groups, a common characteristic in fields such as genomics and finance. To tackle this critical issue, we introduce a novel framework that accounts for general dependency structures. Our proposed dependency-aware T-Rex selector integrates hierarchical graphical models within the T-Rex framework to effectively harness the dependency structure among variables. Leveraging martingale theory, we prove that our variable penalization mechanism ensures FDR control. We further generalize the FDR-controlling framework by stating and proving a clear condition necessary for designing both graphical and non-graphical models that capture dependencies. Additionally, we formulate a fully integrated optimal calibration algorithm that concurrently determines the parameters of the graphical model and the T-Rex framework, such that the FDR is controlled while maximizing the number of selected variables. Numerical experiments and a breast cancer survival analysis use-case demonstrate that the proposed method is the only one among the state-of-the-art benchmark methods that controls the FDR and reliably detects genes that have been previously identified to be related to breast cancer. An open-source implementation is available within the R package TRexSelector on CRAN.
Because of their excellent asymptotic and finite-length performance, spatially-coupled (SC) codes are a class of low-density parity-check codes that is gaining increasing attention. Multi-dimensional (MD) SC codes are constructed by connecting copies of an SC code via relocations in order to mitigate various sources of non-uniformity and improve performance in many data storage and data transmission systems. As the number of degrees of freedom in the MD-SC code design increases, appropriately exploiting them becomes more difficult because of the complexity growth of the design process. In this paper, we propose a probabilistic framework for the MD-SC code design, which is based on the gradient-descent (GD) algorithm, to design better MD codes and address this challenge. In particular, we express the expected number of short cycles, which we seek to minimize, in the graph representation of the code in terms of entries of a probability-distribution matrix that characterizes the MD-SC code design. We then find a locally-optimal probability distribution, which serves as the starting point of a finite-length algorithmic optimizer that produces the final MD-SC code. We offer the theoretical analysis as well as the algorithms, and we present experimental results demonstrating that our MD codes, conveniently called GD-MD codes, have notably lower short cycle numbers compared with the available state-of-the-art. Moreover, our algorithms converge on solutions in few iterations, which confirms the complexity reduction as a result of limiting the search space via the locally-optimal GD-MD distributions.
Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.
Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89 and 4.42 on the MPIIGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.